Your Selections

Neveling, Matthias
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Methane Fuel Based Turbocharged Direct Injection Engine in a Hybrid Powertrain - An Efficient Synergy

Continental Powertrain-Friedrich Graf, Stefan Lauer, Jan Ehrhard
Ford-Werke GmbH-Harald Stoffels, Carsten Weber
Published 2019-09-09 by SAE International in United States
There is no doubt that the modern internal combustion engine (ICE) is approaching its theoretical limits in terms of efficiency. Owed to the fact that the conversion of fuel-bound chemical energy into effectively usable power by combustion is largely defined by the fuel properties, the combustion process and the implicit phenomenon of abnormal combustion is a governing factor that limits further efficiency increases.However, the use of a knock-resistant fuel such as methane is leading to a significant raise in the average combustion pressure and total engine efficiency. In turn this requires a base engine architecture that is specially designed to cater the increased thermal and mechanical requirements so that the positive fuel properties can be fully exploited.Furthermore, an improvement of the energy balance is achieved by utilizing the kinetic energy stored in the vehicle by means of electrical recovery. In consequence, a positive synergy can be observed when mating this type of internal combustion engine to a hybrid powertrain. This hybrid powertrain consists of a P2 hybrid module containing an offset 48V electrical machine and…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Hybrid Powertrain Technology Assessment through an Integrated Simulation Approach

Continental-Naroa Zaldua-Moreno, Lorenzo Pace
Ford Werke GmbH-Harald Stoffels
Published 2019-09-09 by SAE International in United States
Global automotive fuel economy and emissions pressures mean that 48 V hybridisation will become a significant presence in the passenger car market. The complexity of powertrain solutions is increasing in order to further improve fuel economy for hybrid vehicles and maintain robust emissions performance. However, this results in complex interactions between technologies which are difficult to identify through traditional development approaches, resulting in sub-optimal solutions for either vehicle attributes or cost. The results presented in this paper are from a simulation programme focussed on the optimisation of various advanced powertrain technologies on 48 V hybrid vehicle platforms. The technologies assessed include an electrically heated catalyst, an insulated turbocharger, an electric water pump and a thermal management module. The novel simulation approach undertaken uses an integrated toolchain capturing thermal, electrical and mechanical energy usage across all powertrain sub-systems. Through integrating 0-D and 1-D sub-models into a single modelling environment, the operating strategy of the technologies can be optimised while capturing the synergies that exist between them. This approach enables improved and more informed cost/benefit ratios for…
This content contains downloadable datasets
Annotation ability available