Your Selections

Nene, Devendra
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Engine Fuel Economy Optimization for different Hybrid Architectures using 1-D Simulation technique

Tafe Motors and Tractors Limited-Ajay Nain, Devendra Nene
  • Technical Paper
  • 2019-28-2496
To be published on 2019-11-21 by SAE International in United States
In order to improve fuel economy of the 3.3 litre tractor model, various kinds of engine hybridization is studied. This paper presents a methodology to predict engine fuel consumption using 1-D software by coupling Ricardo Wave and Ricardo Ignite. Engine fuel consumption and emission maps are predicted using Ricardo WAVE. These maps are used as an input to IGNITE for predicting cumulative fuel consumption. There is good agreement within 10% deviation between simulated cumulative fuel consumption and experimental cumulative fuel consumption. Same calibrated model is used further for studying series hybridization, parallel P1 type and Parallel P2 type of hybridization. A design of experiment (DOE) model is run for different electric motor sizes, battery capacity and battery state of charge condition, to understand their effects on overall engine fuel consumption and cycle soot emission. Model predicts overall significant reduction in cumulative fuel consumption and soot emission. Lower soot emission will leads to smaller exhaust after-treatment size. There is trade-off between higher cost due to hybridization and lower cost due to lower after-treatment size. A cost…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Electric hybrid system Architecture & Functional component selection criteria for application based Off-Highway segment

Ajay Nain, Devendra Nene
Hybrid Vehicle-Jaipal Singh
  • Technical Paper
  • 2019-28-2495
To be published on 2019-11-21 by SAE International in United States
Hybridization continues to be growing trend in vehicular applications. Current study shows a holistic system approach for the design & integration of the powertrain in Off-Highway tractor applications. It includes study & benchmarking of system architecture of an all-electric and diesel-electric drive systems as per application requirement. Further comprehensive study was done on functional components for an electric powertrain, which includes electric drives, batteries & controllers. Selection & design of these components was studied & component selection approach was developed for typical Off-Highway tractor application. Current study was divided into three parts. 1.Study of different Off-Highway tractor applications & selection of all-electric, series & parallel hybrid architectures as per application requirement. For Parallel hybrid configuration, Comprehensive approach was developed for selection & optimization of degree of hybridization required as per Off-Highway tractor application requirement. Architecture selection approach considers the way to take care of % increase of cost price with conventional tractor, market availability of components, Integration constraints, fuel consumption, and efficiency of transmission & smooth delivery of power as required by operator. 2.For above…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Engine Valve Train Dynamic Analysis using 1-D Simulation Approach

Tafe Motors and Tractors Limited-Ajay Nain, Devendra Nene
  • Technical Paper
  • 2019-28-2422
To be published on 2019-11-21 by SAE International in United States
In order to reduce engine development timing and cost, a numerical calculation used to evaluate valve train systems. This paper discusses the work done on kinematic and dynamic analysis of Valve Train (VT) system of a diesel engine by using 1-D Ricardo Valdyn software. The goal is to meet optimum intake, exhaust valve timing requirement, maximize valve open area and 20% overspeed requirement. Valve train model is prepared and inputs like mass and stiffness are estimated from actual weighing and finite element approach respectively. Simulation model is used for predicting valve bounce speed, valve displacement, cam-follower contact stress and strain in the rocker arm. Initially, Kinematic analysis is carried out to study the change in valve motion characteristics such as cam contour radius, tappet contact eccentricity etc. Further to this, dynamic analysis is carried out to assess forces and stresses on valve train components. Effect of cam tappet contact stresses, buckling load on push rod, spring surge, ratio of spring force to inertia force, valve seating velocity at increased speed condition etc. are discussed in…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Engine Exhaust Noise Optimization Using Sobol DoE Sequence and NSGA-II Algorithms

Tafe Motors and Tractors Limited-Ishwinder Pal Singh Sethi, Devendra Nene, Anand Shivajirao Patil
Published 2019-06-05 by SAE International in United States
Exhaust muffler is one of the most important component for overall vehicle noise signature. Optimized design of exhaust system plays a vital role in engine performance as well as auditory comfort. Exhaust orifice noise reduction is often contradicted by increased back pressure and packaging space. The process of arriving at exhaust design, which meets packaging space, back pressure and orifice noise requirements, is often manual and time consuming. Therefore, an automated numerical technique is needed for this multi-objective optimization.In current case study, a tractor exhaust system has been subjected to Design of Experiments (DoE) using Sobol sequencing algorithm and optimized using NSGA-II algorithm. Target design space of the exhaust muffler is identified and modeled considering available packaging constrain. Various exhaust design parameters like; length of internal pipes, location of baffles and perforation etc. are defined as input variables. Performance objective of back pressure and sound pressure level has also been defined in simulations workflow.Exhaust orifice noise has been reduced with significant reduction in overall simulations time. The optimal design is achieved satisfying all constrains leading…
This content contains downloadable datasets
Annotation ability available