The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Naber, Jeffrey D.
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Alleviating the Magnetic Effects on Magnetometers using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

Michigan Technological University-Ahammad Basha Dudekula, Jeffrey D. Naber
  • Technical Paper
  • 2020-01-1025
To be published on 2020-04-14 by SAE International in United States
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement. The present work focuses on alleviating magnetic disturbances for ground vehicles by fusing the vehicle kinematics information with IMU senor in an Extended Kalman filter (EKF) with the vehicle orientation represented using Quaternions. In addition, the error in rate measurements from gyro sensor gets accumulated as the time progress which results in drift in rate measurements and thus affecting the vehicle…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays

Now at Motorola Inc., Dearborn, Michigan-Jeffrey D. Naber
Sandia National Labs.-Dennis L. Siebers
Published 1996-02-01 by SAE International in United States
Ambient gas density and fuel vaporization effects on the penetration and dispersion of diesel sprays were examined over a gas density range spanning nearly two orders of magnitude. This range included gas densities more than a factor of two higher than top-dead-center conditions in current technology heavy-duty diesel engines.The results show that ambient gas density has a significantly larger effect on spray penetration and a smaller effect on spray dispersion than has been previously reported. The increased dependence of penetration on gas density is shown to be the result of gas density effects on dispersion. In addition, the results show that vaporization decreases penetration and dispersion by as much as 20% relative to non-vaporizing sprays; however, the effects of vaporization decrease with increasing gas density.Characteristic penetration time and length scales are presented that include a dispersion term that accounts for the increased dependence of penetration on ambient density. These penetration time and length scales collapse the penetration data obtained over the entire range of conditions examined in the experiment into two distinct non-dimensional penetration curves:…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Natural Gas Autoignition Under Diesel Conditions: Experiments and Chemical Kinetic Modeling

California State Univ. - Northridge-Shoeleh S. Di Julio
Lawrence Livermore National Lab.-Charles K. Westbrook
Published 1994-10-01 by SAE International in United States
The effects of ambient gas thermodynamic state and fuel composition on the autoignition of natural gas under direct-injection diesel conditions were studied experimentally in a constant-volume combustion vessel and computationally using a detailed chemical kinetic model. Natural gas compositions representative of variations observed across the U.S. were considered. These results extend previous observations to more realistic natural gas compositions and a wider range of thermodynamic states that include the top-dead-center conditions in the natural gas version of the 6V-92 engine being developed by Detroit Diesel Corporation.At temperatures less than 1200 K, the experiments demonstrated that the ignition delay of natural gas under diesel conditions has a dependence on temperature that is Arrhenius in character and a dependence on pressure that is close to first order. The Arrhenius temperature dependence agrees with observations previously reported for natural gas and well-established trends for conventional diesel fuels. Natural gas composition did not change the nature of the above dependencies but did affect the magnitude of the ignition delay. The measured ignition delays were longest for pure methane and…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Hydrodynamics of Droplet Impingement on a Heated Surface

University of Wisconsin-Madison-Jeffrey D. Naber, Patrick V. Farrell
Published 1993-03-01 by SAE International in United States
The impingement of liquid fuels on surfaces in IC engines affects performance and emissions. To better understand liquid/solid interactions, the impact of single droplets on a healed surface was experimentally examined. The droplet impingement was photographed with a high speed cine camera to obtain a history of the hydrodynamics of the impingement process. Images obtained from the cine photography were inspected to determine hydrodynamic regimes: wetting, transition, and non-wetting, associated with the specific impingement conditions (droplet size, velocity, surface temperature, and ambient pressure). Images from selected impingement conditions were further analyzed to quantify the atomization resulting from the impingement.
Annotation ability available