Results
This specification covers an aluminum alloy in the form of sheet and plate 0.020 to 6.000 inches (0.551 to 152.4 mm), inclusive, in thickness (see 8.6).
This specification covers a high-strength, corrosion-resistant alloy in the form of bars up to 1.75 inches (44.4 mm) in diameter (see 8.2).
This specification covers a high-strength, corrosion-resistant alloy in the form of bar up to 1.75 inches (44.4 mm) in diameter (see 8.2).
This specification covers the procurement of granular heat-treating salts suitable for use in the molten state.
This SAE Recommended Practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with spark ignition (SI) engines and compression ignition (CI) engines for land vehicles. Current legal definitions only distinguish between “Unleaded Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
This document recommends design and performance criteria for aircraft lighting systems used to illuminate flight deck controls, luminous visual displays used for transfer of information, and flight deck background and instrument surfaces that form the flight deck visual environment. This document is for aircraft, except for applications requiring night vision compatibility.
The scope of this SAE performance standard is to provide a simple, practical, and broadly applicable test procedure for appraising luminous Illuminant A reflectance of reflecting safety glazing materials for road vehicles. This SAE performance standard, which provides a simple test procedure widely used in the optics field, may be used to measure the reflectivity which films applied to safety glazing materials for road vehicles may enhance. This test procedure applies to conditions where feasibility, rather than accuracy of measurement, is of prime importance. Measurements can be made outside laboratories in a quality control environment and in similar applications, when glazings, instead of small test specimens, have to be tested.
This specification establishes the engineering requirements for producing an anodic coating on titanium and titanium alloys and the properties of the coating.
This specification covers discontinuously reinforced aluminum alloy (DRA) metal matrix composites (MMC) made by mechanical alloying of the 2124A powder and SiC particulate, which is then consolidated by hot isostatic pressing (HIP) into shapes less than 62 square inches (0.04 m2) in cross-sectional area (see 8.12).
This specification covers the requirements for glass fabric base plastic honeycomb core materials for aircraft structural applications, including aircraft exterior parts, such as radio and radar antenna housings, and other parts.
This specification covers the requirements for procurement of one grade of powdered molybendum disulfide to be used in lubricants and greases for surfaces where boundary conditions exist.
This specification covers class L, low dielectric constant (12 or under), ceramic, electrical, insulating compounds, for use in electronic, communications, and allied electrical equipments, and the grading thereof (see 6.1).
This specification covers steel forgings suitable for use in the construction of aircraft/aerospace equipment, special ordnance, and related accessories.
This specification presents the requirements for one type of a heat-sensitive recording paper, in roll form, that furnishes permanent marking or tracing on one side.
This specification covers chrome-molybdenum (4130) steel bars and forging stock of aircraft quality.
This specification covers cored and uncored open cell latex foam rubber sheets, molded and hand- built shapes having good shock-absorbing, vibration-damping, and comfort cushioning characteristics (see 6.1).
This specification covers the requirements for surface bonded laminated shim stock.
This specification covers grease for use within an aircraft. It also defines the quality control requirements to assure batch conformance and materials traceability and the procedures to manage and communicate changes in the grease formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in 2.2, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before a grease is approved for use in their equipment. Approval and/or certification for use of a specific grease in aero and aero-derived marine and industrial applications is the responsibility of the individual equipment builder and/or governmental authorities and is not implied by compliance with or qualification to this specification.
This specification establishes the requirements for a waterborne, corrosion-inhibiting, chemical- and solvent-resistant, anodic electrodeposition epoxy primer capable of curing at 200 to 210 °F (93 to 99 °C).
This specification covers grease for use on aircraft wheel bearings. It also defines the quality control requirements to assure batch conformance and materials traceability and the procedures to manage and communicate changes in the grease formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in 2.2, referencing this specification. Products qualified to this specification are listed on a qualified products list (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before a grease is approved for use in their equipment. Approval and/or certification for use of a specific grease in aero and aero-derived marine and industrial applications is the responsibility of the individual equipment builder and/or governmental authorities and is not implied by compliance with or qualification to this
This specification covers pasted-mica electrical insulation for molded armature slot bases, commutator insulation, shells, heating elements, and other similar insulating purposes.
This specification establishes requirements for three types of corrosion-preventative coatings for protection of aircraft integral fuel tanks.
This SAE Standard encompasses connectors between two cables or between a cable and an electrical component and focuses on the connectors external to the electrical component. This document provides environmental test requirements and acceptance criteria for the application of connectors for direct current electrical systems of 60 V or less in the majority of heavy-duty applications typically used in off-highway machinery. Severe applications can require higher test levels or field-testing on the intended application.
This SAE Recommended Practice defines the minimum performance specifications for sensors used within anthropomorphic test devices (ATDs) when performing impact tests per SAE J211. It is intended that any agency proposing to conduct tests in accordance with SAE J211 shall be able to demonstrate that the transducers they use would meet the performance requirements specified in this document.
This specification covers electric furnace steel bars and reforging stock of aircraft quality.
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
This specification covers a low expansion iron alloy in the form of sheet or strip 0.250 inch (6.35 mm) and under in nominal thickness.
This SAE Information Report applies to structural integrity, performance, drivability, and serviceability of personally licensed vehicles not exceeding 10000 pounds GVWR such as sedans, crossovers, SUVs, MPVs, light trucks, and van-type vehicles that are powered by gas and alternative fuel such as electric, plug-in hybrid, or hybrid technologies. It provides engineering direction to vehicle modifiers in a manner that does not limit innovation, and it specifies procedures for preparing vehicles to enhance safety during vehicle modifications. It further provides guidance and recommendations for the minimum acceptable design requirements and performance criteria on general and specific structural modifications, thereby allowing consumers and third-party payers the ability to obtain and purchase equipment that meets or exceeds the performance and safety of the OEM production vehicle.
This SAE Standard covers normalized electric-resistance welded flash-controlled single-wall, low-carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, double flaring, beading, forming, and brazing. Material produced to this specification is not intended to be used for single flare applications, due to the potential leak path caused by the Inside Diameter (ID) weld bead or scarfed region. Assumption of risks when using this material for single flare applications shall be defined by agreement between the producer and purchaser. This specification also covers SAE J356 Type-A tubing. The mechanical properties and performance requirements of SAE J356 and SAE J356 Type-A are the same. The SAE J356 or SAE J356 Type-A designation define unique manufacturing differences between coiled and straight material. Nominal reference working pressures for this tubing are listed in ISO 10763 for metric tubing, and SAE
This specification covers a petroleum base material in the form of a liquid.
Specific federal aviation regulations (Titled 14 of the United States Code of Federal Regulations, or 14 CFR) define oxygen system requirements for an in-flight decompression incident. This AIR addresses the operational oxygen system requirements for a decompression incident that may occur at any point during a long-range flight, with an emphasis for a decompression at the equal time point (ETP). This AIR identifies fuel and oxygen management contingencies, and presents possible solutions for the efficient, safe, and optimum fuel/oxygen flight continuation. Oxygen management is a concern to all aircraft, such as single engine types that fly above 10 000 feet and use supplemental oxygen. This document provides a method which can help guide users in developing an oxygen solution for their aircraft.
Items per page:
50
1 – 50 of 212376