Your Selections

Lee, Seonho
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Lightweight Wheel Bearing with Dissimilar Materials for Vehicle

Hyundai Motor Group-Jaehee Lee
Iljin Global-Inha Lee, Seonho Lee, Heechan Shim, Jungyang Park
Published 2019-09-15 by SAE International in United States
Limited fossil fuel resources, air pollution, and global warming all drive strengthening of fuel economy and vehicle emission standards globally. Much R&D continues to be dedicated to improve fuel efficiency of automobiles and to reduce exhaust gasses. These include improvement of engine/driveline performance for higher efficiency, development of alternative energy, and minimization of air resistance through aerodynamic design optimization. OEM weight reduction-focused research has extended into chassis components (steering knuckle, brakes, control arms, etc.) in sequence from body-in-white(BIW). Wheel bearings, one of the core components of a driveline and part of a vehicle’s unsprung mass, are also being required to reduce weight. Conventionally, wheel bearings have achieved “lightweighting” primarily through design optimization methods. They have been highly optimized today using steel based materials. Opportunities for further mass optimization are increasingly limited and so the focus of this study is integration of lighter-materials into steel bearing components for weight savings. Both aluminum and CFRP were considered in the study for partial integration into the steel hub flange which interfaces directly with the wheel. The application of…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Study on Application Methods to Mitigate Galvanic Corrosion between Wheel Bearing and Aluminum Knuckle

Iljin Global-Sewoong Kim, Seonho Lee, Hyounsoo Park
Published 2019-09-15 by SAE International in United States
The substitution of aluminum for steel is an effective weight reduction solution where the application permits it; aluminum knuckles have been widely used for this reason. However, when an aluminum knuckle is assembled with the steel outer-ring of a wheel bearing without any means for galvanic corrosion prevention, the aluminum knuckle may severely corrode. Galvanic corrosion products can make it difficult to remove a wheel bearing from the aluminum knuckle during vehicle maintenance. Prevention of this problem is the focus of this paper. In this study, several concepts were examined to prevent or mitigate galvanic corrosion between a wheel bearing and its mating aluminum knuckle. One set of concepts involves using surface treated metal sleeves (using ferritic nitro-carburizing or a special coating). The sleeves were then inserted onto the outer-ring diameters of the wheel bearings prior to assembly into the steering knuckle. Another set of concepts that were investigated involves the application of thin coatings having high anti-corrosion properties. The coatings were applied directly to the bearing outer-ring knuckle piloting surfaces and bearing knuckle mounting…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Metallurgical Approach for Improving Life and Brinell Resistance in Wheel Hub Units

SAE International Journal of Materials and Manufacturing

ILJIN Group-Seonho Lee, Yoongil Choi, Kyuntaek Cho, Hyounsoo Park
  • Journal Article
  • 05-11-01-0008
Published 2017-09-17 by SAE International in United States
Raceway Brinell damage is one major cause of wheel bearing (hub unit) noise during driving. Original Equipment Manufacturer (OEM) customers have asked continuously for its improvement to the wheel bearing supply base. Generally, raceway Brinelling in a wheel hub unit is a consequence of metallic yielding from high external loading in a severe environment usually involving a side impact to the wheel and tire. Thus, increasing the yielding strength of steel can lead to higher resistance to Brinell damage. Both the outer ring and hub based on Generation 3 (Gen. 3) wheel unit are typically manufactured using by AISI 1055 bearing quality steel (BQS); these components undergo controlled cooling to establish the core properties then case hardening via induction hardening (IH). This paper presents a modified grade of steel and its IH design that targets longer life and improves Brinell resistance developed by ILJIN AMRC (Advanced Materials Research Center). And also, this focuses on demonstrating the improved Brinell resistance using exclusive Brinelling test. The strengthening mechanism is the fine grains generated by restriction of grain…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Study of Mechanical Properties and Rolling Contact Fatigue Behavior on Specially Austempered Bearing Steel

ILJIN Global-Seonho Lee, Heejae Kang, Ohchul Kwon, Chirl Soo Shin
Published 2016-09-18 by SAE International in United States
A trend in automotive parts development is the pursuit of long life, high quality and reliability. The increase in service life of automotive wheel bearings, by improving the rolling contact fatigue (RCF) life of bearing steels, was investigated. Conventional studies of bearing steels and heat treatments have dealt with quenching and tempering (Q/T) in 52100 steel. This study is a new trial to increase the strength of bearing steels by special austempering in phases after general Q/T heat treatments.
Annotation ability available