Your Selections

Kumar, Madhan
Show Only

Collections

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Combustion Optimization and In-cylinder NOx and PM Reduction by using EGR and Split Injection Technique

ARAI Academy-Madhan Kumar, Aatmesh Jain, Kamalkishore Chhaganlal Vora
  • Technical Paper
  • 2019-28-2560
To be published on 2019-11-21 by SAE International in United States
Nowadays, the major most challenge in the diesel engine is the oxides of nitrogen (NOx) and particulate matter (PM) trade-off, with minimal reduction in Power and BSFC. Modern day engines also rely on expensive after-treatment devices, which may decrease the performance and increase the BSFC. In this paper, combustion optimization and in-cylinder emission control by introducing the Split injection technique along with EGR is carried out by 1-D (GT-POWER) simulation. Experiments were conducted on a 3.5 kW Single-cylinder naturally aspirated CRDI engine at the different load conditions. The Simulation model incorporates detailed pressure (Burn rate) analysis for different cases and various aspects of ignition delay, premixed and mixing controlled combustion rate, the injection rate affecting oxides of nitrogen and particulate matter. The predictive combustion model (DI-PULSE) has been developed for the calibration of an engine under multiple injections and the detailed injection rates with EGR rates. Split injection with higher fuel quantity injected in the 1st pulse, helped to significantly reduce PM emissions. This reduction is due to the restraint in the premixed phase of…