Your Selections

Koiwai, Ryutaro
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Kinetic Modeling of Ammonia-SCR and Experimental Studies over Monolithic Cu-ZSM-5 Catalyst

Hokkaido University-Wataru Eijima, Gen Shibata, Yoshimitsu Kobashi, Ryutaro Koiwai, Hideyuki Ogawa, Kenichi Shimizu
Waseda University-Jin Kusaka
Published 2019-01-15 by SAE International in United States
Ammonia-selective catalytic reduction (SCR) systems have been introduced commercially in diesel vehicles, however catalyst systems with higher conversion efficiency and better control characteristics are required to know the actual emissions during operation and the emissions in random test cycles. Computational fluid dynamics (CFD) is an effective approach when applied to SCR catalyst development, and many models have been proposed, but these models need experimental verification and are limited in the situations they apply to. Further, taking account of redox cycle is important to have better accuracy in transient operation, however there are few models considering the cycle. Model development considering the redox reactions in a zeolite catalyst, Cu-ZSM-5, is the object of the research here, and the effects of exhaust gas composition on the SCR reaction and NH3 oxidation at high temperatures are investigated. The simulations are compared with the experimental results of a surrogate gas, a mixture of nitrogen monoxide (NO), oxygen (O2), water vapor (H2O), and nitrogen (N2), and the accuracy of the developed model is validated. To investigate the effects of O2…
This content contains downloadable datasets
Annotation ability available