The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Ko, MinSeok
Show Only

Collections

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Model Predictive Control of an Air Path System for Multi-Mode Operation in a Diesel Engine

Garrett Advancing Motion-Paul Dickinson, Jaroslav Pekar, MinSeok Ko
Hyundai Motor Group-Buomsik Shin, Yohan Chi, Minsu Kim
  • Technical Paper
  • 2020-01-0269
To be published on 2020-04-14 by SAE International in United States
A supervisory model predictive control system is developed for the air system of diesel engine. The diesel air system is complicated, composing of many components and actuators, with significant nonlinear behavior. Furthermore, the engine usually often operates in various modes, for example to activate catalyst regeneration like LNT or DPF. Model predictive control (MPC) is based on a dynamical model of the controlled system and it features predicted actuator path optimization. MPC has been previously successfully applied to the diesel air path control problem, however, most of these applications were developed for a single operating mode (often called normal operating mode) which has only one set of high-level set point values. In reality, each engine operating mode requires a different set of set point maps in order to meet the various system requirements such as, HP-EGR modes for cold start purposes, heat-up modes for after-treatment conditioning, rich operation for catalyst purging and normal modes. Air mass and its composition requirement are heavily depending on each specific mode. This large array of mode specific set points…