Results
This SAE Standard for reliability-centered maintenance (RCM) is intended for use by any organization that has or makes use of physical assets or systems that it wishes to manage responsibly
This specification covers a titanium alloy in the form of sheet and strip up to 0.143 inch (3.63 mm), inclusive, in nominal thickness (see 8.6
This specification covers a tantalum alloy in the form of bars and rods up through 3.5 inches (88.9 mm), inclusive (see 8.5
This SAE Standard defines the method for deriving and verifying the peening intensity exerted onto a part surface during shot peening or other surface enhancement processes
This specification covers an aluminum alloy in the form of die forgings up to 4 inches (102 mm), inclusive, in thickness and hand forgings up to 6 inches (152 mm), inclusive, in thickness (see 8.6
This specification covers a corrosion-resistant, premium aircraft-quality alloy steel in the form of bars, forgings, and stock for forging
To determine the ability of a fuel/water separator to separate emulsified or finely dispersed water from fuels. This test method is applicable for biodiesel fuel
This test code describes tests for determining characteristics of hydraulic positive displacement pumps used on off-road self-propelled work machines as referenced in SAE J1116
This specification establishes requirements for titanium forgings of any shape or form from which finished parts are to be made (see 2.4.4, 8.3, and 8.6
This specification covers a corrosion-resistant steel in the form of sheet, strip, and plate
This specification covers aluminum and aluminum alloy foil in the form of laminated sheet (see 8.6
This specification covers a premium aircraft-quality corrosion-resistant steel in the form of bars, forgings, and forging stock
This specification covers an aluminum alloy in the form of plate 0.250 to 5.500 inch (6.35 to 139.70 mm), inclusive, in nominal thickness (see 8.5
This test code describes tests for determining characteristics of hydraulic positive displacement motors as used on off-road self-propelled work machines as referenced in SAE J1116
This specification covers a premium aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock
This SAE Standard applies to horizontal earthboring machines found in SAE J2022 of the following types: a Auger boring machines b Rod pushers c Rotary rod machines d Impact machines This document does not apply to horizontal directional drilling (HDD) machines as defined in ISO 21467, mining machinery covered in SAE J1116, Table 1, nor does it apply to conveyors, tunnel boring machines, pipe jacking systems, micro tunnelers, or well drilling machines
This test method provides a standardized procedure for evaluating the electrochemical resistance of automotive coolant hose and materials. Electrochemical degradation has been determined to be a major cause of EPDM coolant system hose failures. The test method consists of a procedure which induces voltage to a test specimen while it is exposed to a water/coolant solution. Method #1, referred to as a “Brabolyzer” test, is a whole hose test. Method #2, referred to as a “U” tube test, uses cured plate samples or plates prepared from tube material removed from hose (Method No. 2 is intended as a screening test only). Any test parameters other than those specified in this SAE Recommended Practice, are to be agreed to by the tester and the requester
This specification covers a titanium alloy in the form of bars up through 4.000 inches (101.60 mm) in nominal diameter or least distance between parallel sides, inclusive, and maximum cross-sectional area of 32 square inches (206.5 cm2), forgings of thickness up through 4.000 inches (101.60 mm), inclusive, and maximum cross-sectional area of 32 square inches (206.5 cm2), and stock for forging of any size (see 8.6
This SAE Standard provides test procedures, requirements, and guidelines for motorcycle turn signal lamps. It does not apply to mopeds
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test
This specification covers a titanium alloy in the form of sheet, strip, and plate up through 4 inches (101.6 mm) (see 8.5
This specification defines the requirements for a grooved clamp coupling and flanges suitable for joining intermediate pressure and temperature ducting in aircraft air systems. The rigid coupling joint assembly, hereafter referred to as "the joint", shall operate within the temperature range of -65 °F to +800 °F
This specification covers polyvinyl chloride insulated single conductor electric wires made with tin-coated copper conductors or silver-coated copper alloy conductors. The polyvinyl chloride insulation of these wires may be used alone or in combination with other insulating or protective materials
This Recommended Practice applies to engine cooling fans up to 2000 mm in diameter with a mounting interface consisting of a pilot hole and a circular bolt pattern. Most of these fans are belt, gear, clutch, hydraulically, or electrically driven
This SAE Recommended Practice is applicable to Electric Drive Cooling Fan Assemblies used in Light Duty vehicle cooling systems (typically, passenger cars and light duty trucks). This document outlines the Electric Drive Cooling Fan Motor Mounting interface characteristics such that a common standard is possible
This SAE Recommended Practice is intended for stakeholders of the automotive industry that are conducting emission testing on materials, parts, or components used in automotive interiors. Testing methods may specifically define the handling and packaging conditions for the material to be analyzed. In these cases, follow the method as closely as possible. Use this document as a guide where the protocol for handling and packaging the samples between production and testing may be undefined or ambiguous
This SAE Recommended Practice is applicable to all heat exchangers used in vehicle and industrial cooling systems. This document outlines the tests to determine the heat transfer and pressure drop performance under specified conditions. This document has been reviewed and revised by adding several clarifying statements to Section 4
This SAE Recommended Practice is intended for use in testing and evaluating the approximate performance of engine-driven cooling fans. This performance would include flow, pressure, and power. This flow and pressure information is used to estimate the engine cooling performance. This power consumption is used to estimate net engine power per SAE J1349. The procedure also provides a general description of equipment necessary to measure the approximate fan performance. The test conditions in the procedure generally will not match those of the installation for which cooling and fuel consumption information is desired. The performance of a given fan depends on the geometric details of the installation, including the shroud and its clearance. These details should be duplicated in the test setup if accurate performance measurement is expected. The performance at a given air density and speed also depends on the volumetric flow rate, or the pressure rise across the fan, since these two
This SAE Recommended Practice is intended for use in testing and evaluating the performance of electric cooling fan (ECF) assemblies typically used for vehicle engine cooling. Conducted in a laboratory environment with intended heat exchangers, the performance measurement includes fan output in terms of airflow and pressure and fan motor input in terms of voltage and current. This information can be used to calculate the efficiency of the assembly, including aerodynamic efficiency of the fan and shroud, and electrical efficiency of the motor. The electric power consumption can be used to estimate electrical charging system sizing and fuel economy. The performance of a given fan assembly depends on the installation details of the application, including the effects of system resistance and geometries of the grill, heat exchangers, engine and other underhood components, and front end components. This document provides guidance for duplicating such details in the test setup for accurate
This SAE Recommended Practice provides an orderly series for designating the thickness of unocated and coated hot-rolled and cold-rolled sheet and strip. This document also provides methods for specifying thickness tolerances
This SAE Recommended Practice establishes limits for electrical circuits on motor vehicle safety glazing materials
This SAE Recommend Practice establishes for passenger cars, light trucks, and multipurpose vehicles with GVW of 4500 kg (10000 pounds) or less, as defined by EPA, and M1 category vehicles as defined by the European Commission
Items per page:
50
1 – 50 of 210807