Results
This document defines the steps and documentation required to perform a digital fiber optic link loss budget. This document does not specify how to design a digital fiber optic link. This document does not specify the parameters and data to use in a digital fiber optic link loss budget.
This document defines a quantified means of specifying a digital fiber optic link loss budget: Between end users and system integrators Between system integrators and subsystem suppliers Between subsystem suppliers and component vendors The standard specifies methods and the margin required for categories of links.
This standard covers jacketed single-fiber multimode and single-mode fiber optic cables for aerospace usage.
This report provides cross reference matrices detailing current test methods used in the qualification processes of fiber optic connectors, termini and cables for aerospace, telecommunications, and naval applications. The cross-reference allows the end user to select the test methods most suitable for qualifying a component, or to identify alternative test methods where a specific test is not defined in a referenced document. The report also provides information on what area each type of referenced document has been developed for.
This SAE Aerospace Standard (AS) defines the items that shall be considered when creating a fiber optic cable assembly specification and source control drawing intended for installation on aerospace platforms.
This specification covers disinfectants or chemicals for use in disinfecting aircraft after carrying livestock.
This SAE Standard describes alternator physical, performance, and application requirements for heavy-duty electrical charging systems for off-road work machines, including those defined in SAE J1116.
This SAE Recommended Practice is intended for stakeholders of the automotive industry that are conducting emission testing on materials, parts, or components used in automotive interiors. Testing methods may specifically define the handling and packaging conditions for the material to be analyzed. In these cases, follow the method as closely as possible. Use this document as a guide where the protocol for handling and packaging the samples between production and testing may be undefined or ambiguous.
This document covers the general physical, electrical, functional, safety, and performance requirements for conductive power transfer to an electric vehicle using a coupler, which can be hand-mated and is capable of transferring either DC or AC single-phase power using two current-carrying contacts.
This SAE Aerospace Recommended Practice (ARP) details the recommended process for correcting measured non-volatile particulate matter (nvPM) mass and number data for particle losses in the sampling and measurement system specified in ARP6320B. This technique is only recommended for conditions where both nvPM mass and number concentration measurements are in the valid measurement ranges of the instruments that are discussed in the tool limitations section. This ARP also supplies an Excel software tool with documentation to automate the process. The body of this ARP details the recommended calculation method, uncertainties, and limitations of the system loss correction factors. It explains, in detail, the required inputs and outputs from the supplied Excel software tool (developed on Windows 7, Excel 2016). Also included are: The Excel correction tools (refer to Attachments I and V). Installation instructions for a Windows-based computer (refer to Attachment II). A user technical manual
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer to an electric vehicle using a coupler capable of, but not limited to, transferring three-phase AC power. It defines a conductive power transfer method including the digital communication system. It also covers the functional and dimensional requirements for the electric vehicle inlet, supply equipment connector, and mating housings and contacts. Moveable charging equipment such as a service truck with charging facilities are within scope. Charging while moving (or in-route-charging) is not in scope.
This SAE Standard serves as a guide for vibration testing procedures of Automotive and Heavy Duty storage batteries.
This procedure provides methods to determine the appropriate inertia values for all passenger cars and light trucks up to 4540 kg of GVWR. For the same vehicle application and axle (front or rear), different tests sections or brake applications may use different inertia values to reflect the duty-cycle and loading conditions indicated on the specific test.
This SAE Standard establishes the performance specifications for the zero-tolerance breath alcohol detection system to reduce the risks of driving under the influence of alcohol. It defines the accuracy and precision requirements of the breath alcohol concentration (BrAC) measurement, as well as the acceptability criteria and key parameters to test these requirements. Additionally, this standard sets the performance requirements of the system for ethanol sensitivity, the response time, and the electrical, mechanical, and environmental conditions the system may encounter throughout the lifespan of the vehicle.
This document provides recommended practices regarding how System Theoretic Process Analysis (STPA) may be applied to safety-critical systems in any industry.
To provide a procedure to inspect a refrigerant cylinder used in equipment servicing mobile air-conditioning (A/C) systems. This includes the pressure cylinder used for refrigerant recovery/recycling and charging equipment.
This recommended practice is intended to provide general guidelines for the selection and proper use of cleaning and disinfecting product characteristics acceptable for use on vehicle interiors and exterior touch points (cleaning before disinfecting being best practice in general for vehicles, as with other situations), and the effectiveness of the disinfecting products with certain characteristics, as well as indicating the product characteristics that will not cause damage to those surfaces.
This SAE Standard defines the safety and performance requirements for low-speed vehicles (LSVs). The safety specifications in this document apply to any powered vehicle with a minimum of four wheels, a maximum level ground speed of more than 32 km/h (20 mph) but not more than 40 km/h (25 mph), and a maximum gross vehicle weight of 1361 kg (3000 pounds), that is intended for operating on designated roadways where permitted by law.
This SAE Information Report was prepared by the SAE Fuels and Lubricants Technical Committee for two purposes: (a) to assist the users of automotive equipment in the selection of axle1 and manual transmission lubricants for field use, and (b) to promote a uniform practice for use by marketers of lubricants and by equipment builders in identifying and recommending these lubricants by a service designation.
This SAE Recommended Practice establishes uniform chassis dynamometer test procedures for hybrid-electric vehicles (HEVs) and plug-in hybrid-electric vehicles (PHEVs) designed for public roads. This recommended practice provides instructions for measuring and calculating the exhaust emissions and fuel economy of such vehicles over the following standard test cycles: the Urban Dynamometer Driving Schedule (UDDS), the Highway Fuel Economy Driving Schedule (HFEDS), the US06 Driving Schedule (US06), the SC03 Driving Schedule (SC03), and the cold-start Federal Test Procedure (cold FTP), which is based on the UDDS. However, the procedures are structured so that other driving schedules may be substituted, provided that the corresponding preparatory procedures, test lengths, and weighting factors are modified accordingly. This document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, CO2); instead, that decision will depend on the objectives of the tester. The
Items per page:
50
1 – 50 of 212718