Search
Advanced Search
of the following are true
(
)

Results

Items (211,633)
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry
Engine Power Test Code Committee
This SAE Aerospace Information Report (AIR) provides the hydraulic and flight-control system designer with the various design options and techniques that are currently available to enhance the survivability of military aircraft. The AIR addresses the following major topics: a Design concepts and architecture (see 3.2, 3.5, and 3.6) b Design implementation (see 3.3, 3.6, and 3.7) c Means to control external leakage (see 3.4) d Component design (see 3.8
A-6A2 Military Aircraft Committee
This specification covers the general requirements that are common to most hydraulic components (see 6.2), used in aeronautical hydraulic systems (see 6.1
A-6A2 Military Aircraft Committee
Much of the available long-term storage test data has been reviewed and topically separated to enable the independent discussion of storage effects on fluids, seals, hydraulic components, and hydraulic systems. Comments are made in Section 4 concerning the applicability of the test results and regarding design practices for storability. Conclusions are drawn in Section 5 regarding inactive storage of hydraulic systems for at least a 7 year period
A-6A2 Military Aircraft Committee
This SAE Aerospace Information Report (AIR) has been compiled to provide information on hydraulic systems fitted to the following categories of military vehicles. Attack Airplanes Fighter Airplanes Bombers Anti-Sub, Fixed Wing Airplanes Transport Airplanes Helicopters Boats
null, null
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease
A-6A2 Military Aircraft Committee
This standard covers the requirements for non-separable, airframe antifriction needle bearings and corrosion-resistant and traditional materials intended for use in flight vehicle control systems with radial loads
ACBG Rolling Element Bearing Committee
This SAE Aerospace Recommended Practice (ARP) provides processes for achieving the required cleanliness standards during the fabrication, assembly, and functional test of aircraft hydraulic systems. It covers exclusion and removal of solid and liquid contaminants from tubing during manufacture and final assembly, flushing of the installed system, and final checks to ensure cleanliness requirements are met
A-6A2 Military Aircraft Committee
Systems shall be classified in terms of type, category and class
A-6A2 Military Aircraft Committee
Items per page:
1 – 50 of 211633