The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Fan, Shihong
Show Only


File Formats

Content Types








   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Co-Simulation Platform for Powertrain Controls Development

Hyundai-Kia America Technical Center Inc.-Shihong Fan, Yong Sun, Jason Hoon Lee, Jinho Ha
  • Technical Paper
  • 2020-01-0265
To be published on 2020-04-14 by SAE International in United States
With the advancement of simulation software development, the efficiency of vehicle and powertrain controls research and development can be significantly improved. Traditionally, during the development of a new control algorithm, dyno or on-road testing is necessary to validate the algorithm. Physical testing is not only costly, but also time consuming. In this study, a virtual platform is developed to reduce the effort of testing. To improve the simulation accuracy, co-simulation of multiple software is suggested as each software specializes in certain area. The Platform includes Matlab Simulink, PTV Vissim, Tass Prescan and AVL Cruise. PTV Vissim is used to provide traffic environment to PreScan. PreScan is used for ego vehicle simulation and visualization. Traffic, signal and road network are synchronized in Vissim and PreScan. Powertrain system is simulated in Cruise. MATALB/Simulink serves as master of this co-simulation, and integrates the different software together. It also includes human driver model and a powertrain control function. An ADAS-ISG (Idle Stop and Go) powertrain control algorithm is implemented in Simulink and tested by using the platform under different…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of Virtual Fuel Economy Trend Evaluation Process

Hyundai-Kia America Technical Center Inc.-Sanghoon Yoo, Jason H. Lee, Byungho Lee, Jinho Ha
Ohio State University-Mustafa Ridvan Cantas, Shihong Fan, Ozgenur Kavas, Santhosh Tamilarasan, Levent Guvenc
Published 2019-04-02 by SAE International in United States
With the advancement of the autonomous vehicle development, the different possibilities of improving fuel economy have increased significantly by changing the driver or powertrain response under different traffic conditions. Development of new fuel-efficient driving strategies requires extensive experiments and simulations in traffic. In this paper, a fuel efficiency simulator environment with existing simulator software such as Simulink, Vissim, Sumo, and CarSim is developed in order to reduce the overall effort required for developing new fuel-efficient algorithms. The simulation environment is created by combining a mid-sized sedan MATLAB-Simulink powertrain model with a realistic microscopic traffic simulation program. To simulate the traffic realistically, real roads from urban and highway sections are modeled in the simulator with different traffic densities. Other traffic elements which would affect the fuel consumption, such as speed limit information, traffic stop sign and a traffic lights with SPaT (Signal Phase and Timing) information, are a part of the simulator. In order to evaluate the performance of the developed algorithms, fuel consumption performance of the developed algorithms are compared with the fuel consumption performance…
This content contains downloadable datasets
Annotation ability available