Your Selections

Bedka, Kristopher
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

AMA-NASA Langley Research Center-Justin Strickland, Patricia Hunt
FAA William J. Hughes Technical Center-Christopher Dumont
Published 2019-06-10 by SAE International in United States
NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results.The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida. Ten research flights were made into deep convective systems that included Mesoscale Convective Systems (MCS) near the Gulf of Mexico and Atlantic Ocean, and Tropical Storms Danny and Erika near the Caribbean Sea. The radar and in-situ measurements from these ten flights were analyzed…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Analysis and Automated Detection of Ice Crystal Icing Conditions Using Geostationary Satellite Datasets and In Situ Ice Water Content Measurements

SAE International Journal of Advances and Current Practices in Mobility

Met Analytics, Inc.-J. Walter Strapp
NASA John Glenn Research Center-Thomas Ratvasky
  • Journal Article
  • 2019-01-1953
Published 2019-06-10 by SAE International in United States
Recent studies have found that high mass concentrations of ice particles in regions of deep convective storms can adversely impact aircraft engine and air probe (e.g. pitot tube and air temperature) performance. Radar reflectivity in these regions suggests that they are safe for aircraft penetration, yet high ice water content (HIWC) is still encountered. The aviation weather community seeks additional remote sensing methods for delineating where ice particle (or crystal) icing conditions are likely to occur, including products derived from geostationary (GEO) satellite imagery that is now available in near-real time at increasingly high spatio-temporal detail from the global GEO satellite constellation. A recent study using a large sample of co-located GEO satellite and in-situ isokinetic evaporator probe (IKP-2) total water content (TWC) datasets found that optically thick clouds with tops near to or above the tropopause in close proximity (≤ 40 km) to convective updrafts were most likely to contain high TWC (TWC ≥ 1 g m-3). These parameters are detected using automated algorithms and combined to generate a HIWC probability (PHIWC) product at…
Annotation ability available