Your Selections

Bareiss, Max
Show Only


File Formats

Content Types








   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Long-Term Evolution of Straight Crossing Path Crash Occurrence in the U.S. Fleet: The Potential of Intersection Active Safety Systems

Toyota Motor Corp.-Rini Sherony
Virginia Tech-Max Bareiss, H. Gabler
Published 2019-04-02 by SAE International in United States
Intersection collisions currently account for approximately one-fifth of all crashes and one-sixth of all fatal crashes in the United States. One promising method of mitigating these crashes and fatalities is to develop and install Intersection Advanced Driver Assistance Systems (I-ADAS) on vehicles. When an intersection crash is imminent, the I-ADAS system can either warn the driver or apply automated braking. The potential safety benefit of I-ADAS has been previously examined based on real-world cases drawn from the National Motor Vehicle Crash Causation Survey (NMVCCS). However, these studies made the idealized assumption of full installation in all vehicles of a future fleet. The objective of this work was to predict the reduction in Straight Crossing Path (SCP) crashes due to I-ADAS systems in the United States over time. The proportion of new vehicles with I-ADAS was modeled using Highway Loss Data Institute (HLDI) fleet penetration predictions. The number of potential SCP conflicts was modeled as increasing year over year due to a predicted increase in Vehicle Miles Traveled (VMT) each year. Finally, the combined effect of…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Preliminary Estimates of Near Side Crash Injury Risk in Best Performing Passenger Vehicles

Virginia Tech-Max Bareiss, Meagan David, Hampton C. Gabler
Published 2018-04-03 by SAE International in United States
The goal of this paper is to estimate near-side injury risk in vehicles with the best side impact performance in the U.S. New Car Assessment Program (NCAP). The longer-term goal is to predict the incidence of crashes and injury outcomes in the U.S. in a future fleet of the 2025-time frame after current active and passive safety countermeasures are fully implemented. Our assumption was that, by 2025, all new vehicles will have side impact passive safety performance equivalent to current U.S. NCAP five star ratings.The analysis was based on real-world crashes extracted from case years 2010-2015 in the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) in which front-row occupants of late-model vehicles (Model Year 2011+) were exposed to a near-side crash. Vehicles in the dataset were assigned their probability of driver injury greater than AIS 3 (Abbreviated Injury Scale) across any body region (MAIS3+) from NCAP testing based on the VIN and associated identifiers recorded by the NASS/CDS investigator. Using logistic regression, injury risk curves were developed to characterize the performance of each…
This content contains downloadable datasets
Annotation ability available