Search
Advanced Search
of the following are true
(
)

Results

Items (212,826)
This SAE Recommended Practice applies to technical publications which present instructions for the proper unloading, set-up, installations, pre-delivery inspection, operation, and servicing of off-road self-propelled work machines as categorized in SAE J1116. Advertising/marketing and other pre-purchase publications are not included
Machine Technical Steering Committee
This specification covers the engineering requirements for cadmium deposited on ferrous and nonferrous metals using a low hydrogen embrittlement (LHE) electroplating process
AMS B Finishes Processes and Fluids Committee
This specification covers an aluminum alloy in the form of sheet and plate 0.020 to 0.499 inch (0.51 to 12.67 mm), inclusive, in nominal thickness alclad two sides (see 8.5
AMS D Nonferrous Alloys Committee
This specification covers one type of fluorescent magnetic particles in the form of a mixed, ready-to-use suspension in an odorless, inspection oil vehicle and packaged in aerosol cans
AMS K Non Destructive Methods and Processes Committee
This specification covers a corrosion-resistant nickel-copper alloy in the form of bars up to 3.00 inches (76.2 mm), inclusive, in thickness and forgings and forging stock of any size
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of welded and drawn tubing 0.125 inch (3.18 mm) and over in nominal OD and 0.015 inch (0.38 mm) and over in nominal wall thickness
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, and flash-welded rings up to 4.00 inches (101.6 mm), exclusive, in least distance between parallel sides (thickness) or diameter, and stock of any size for forging or flash-welded rings
AMS F Corrosion and Heat Resistant Alloys Committee
This specification establishes process controls for the repeatable implementation of the CSAM process for the manufacturing of metallic and metal-nonmetal blend components
AMS AM Additive Manufacturing Metals
In order to compare test results obtained from different crash test facilities, standardized coordinate systems need to be defined for crash test dummies, vehicle structures, and laboratory fixtures. In addition, recorded polarities for various transducer outputs need to be defined relative to positive directions of the appropriate coordinate systems. This SAE Information Report describes the standardized sign convention and recorded output polarities for various transducers used in crash testing
Safety Test Instrumentation Standards Committee
This specification establishes a procedure for designating minimum elevated temperature tensile property requirements of castings by means of this AMS number and a series of dash numbers
AMS F Corrosion and Heat Resistant Alloys Committee
This ARP provides design and performance recommendations for emergency exits in the passenger cabin. This ARP does not apply to Crew Emergency Exits
S-9B Cabin Interiors and Furnishings Committee
This AIR describes the current scientific and engineering principles of gas turbine lubricant performance testing per AS5780 and identifies gaps in our understanding of the technology to help the continuous improvement of this specification. Test methodologies under development will also be described for consideration during future revisions of AS5780
E-34 Propulsion Lubricants Committee
This document establishes a procedure for disposition of landing gear components that have been involved in accidents/incidents. The recommendations in this document apply to components made of ferrous and non-ferrous alloys. The recommendations in this document do not apply to components made of nonmetallic composite materials
A-5B Gears, Struts and Couplings Committee
This foundation specification (AMS3050) and its associated category specifications (AMS3050/1 through AMS3050/9) cover anti-seize compounds for use on threads of nuts, studs, bolts, and other mating surfaces, including those of superheated steam installations, at temperatures up to 1050 °F (566 °C). Compounds containing PTFE are limited to 600 °F (315 °C) maximum. Materials for nuts, studs, bolts, and other mating surfaces include, but are not limited to: steel, nickel alloys, stainless steel, and silver-coated materials. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in 2.3.3, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before a grease is approved for use in their equipment. Approval and/or
AMS M Aerospace Greases Committee
This SAE Information Report is primarily to familiarize the designer of hydraulic powered machinery with the necessity for oil filtration in the hydraulic power circuit, the degree of system cleanliness required, types of filtration and filters available, and their location and maintenance in the hydraulic circuit
CTTC C1, Hydraulic Systems
To describe laboratory methods for determining and reporting the contaminant level of the wetted portion of hydraulic fluid power components, parts, subsystems and systems, and of fill fluids. For each type of item, it provides a method of obtaining the liquid sample and the contamination level thereof. It also includes procedures for establishing a sampling plan and guidelines for establishing levels of acceptance, but does not set those levels
CTTC C1, Hydraulic Systems
This standard covers the requirements for spherical, self-aligning, self-lubricating bearings that are for use in the ambient temperature range of -65 to +160 °F (-54 to +71 °C) at high cyclic speeds. The scope of the standard is to provide a liner system qualification procedure for helicopter sliding bearings defined and controlled by source control drawings. Once a liner system is qualified, the source controlled bearings may be further tested under application conditions
ACBG Plain Bearing Committee
This SAE Standard encompasses the recommended minimum requirements for non-metallic tubing and/or combinations of metallic tubing to non-metallic tubing assemblies manufactured as liquid- and/or vapor-carrying systems designed for use in gasoline, alcohol blends with gasoline, or diesel fuel systems. This SAE Standard is intended to cover tubing assemblies for any portion of a fuel system which operates above −40 °C (−40 °F) and below 115 °C (239 °F), and up to a maximum working gage pressure of 690 kPa (100 psig). The peak intermittent temperature is 115 °C (239 °F). For long-term continuous usage, the temperature shall not exceed 90 °C (194 °F). It should be noted that temperature extremes can affect assemblies in various manners and every effort must be made to determine the operating temperature to which a specific fuel line assembly will be exposed, and design accordingly. The applicable SAE standards should be referenced when designing liquid-carrying and/or vapor-carrying
Fuel Systems Standards Committee
This SAE Recommended Practice provides instructions and test procedures for measuring air consumption of air braked vehicles equipped with Antilock Brake Systems (ABS) used on highways
Truck and Bus Brake Systems Committee
This specification establishes the requirements for dyed anodic coatings on aluminum alloys
AMS B Finishes Processes and Fluids Committee
This specification covers an aluminum alloy in the form of hand forgings up to 5.000 inches (127.00 mm), inclusive, in nominal thickness at the time of heat treatment, procured to inch/pound dimensions (see 8.6
AMS D Nonferrous Alloys Committee
Increased use of advanced composite structural materials on aircraft has resulted in the need to address the more demanding quality and nondestructive testing procedures. Accordingly, increased utilization of solid laminate composites is driving changes to airline NDI/NDT training requirements and greater emphasis on the application of accurate NDI/NDT methods for composite structures. Teaching modules, including an introduction to composite materials, composite NDI/NDT theory and practice, special cases and lessons learned, are included in this document as well as various hands-on NDI/NDT exercises. A set of proficiency specimens containing realistic composite structures and representative damage are available to reinforce teaching points and evaluate inspector’s proficiency. Extensive details of the guidance modules, hands-on exercises, and proficiency specimens are all presented in this document. This document does not replace OEM guidance as may be specific to material, process
AMS CACRC Commercial Aircraft Composite Repair Committee
This SAE Aerospace Information Report (AIR) identifies and summarizes the various factors that must be considered and evaluated by the design or specifying engineer in establishing the specifications and design characteristics of battery-powered aircraft tow tractors. This AIR is presented in two parts. The first part is simply a summarization of design factors that must be considered in establishing vehicle specifications and design characteristics. The second part refers particularly to the performance characteristics of an aircraft tow tractor. Some definitions, formulas, data, and an example are provided mainly for assisting the specifying engineers of potential buyers and users of aircraft tow tractors in the evaluation and comparison of their requirements with the performance capabilities of the various tow tractors offered by the tow tractor manufacturers. Although the design engineers could also use the formulas and data in their calculations of the performance specifications
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Information Report (AIR) summarizes data and background relative to age control of specific classes of those nitrile type synthetic elastomers used in sealing devices which are resistant to petroleum base hydraulic fluids, lubricating oils, and aircraft fuels. This includes, but is not limited to, those nitrile (NBR or BUNA-N) elastomers previously covered by Section I of MIL-STD-1523
AMS CE Elastomers Committee
This specification covers metric aircraft quality spacers for use as positioners for tubes, flat washers for use as load spreaders, galling protection of adjacent surfaces and or material compatibility, and key or tab washers for use as locks for bolts, nuts, and screws
E-25 General Standards for Aerospace and Propulsion Systems
This specification covers established inch/pound manufacturing tolerances applicable to carbon steel bars ordered to inch/pound dimensions. These tolerances apply to all conditions, unless otherwise noted. The term “excl” applies only to the higher figure of the specified range
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality nitriding grade low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock
AMS E Carbon and Low Alloy Steels Committee
This SAE Aerospace Standard (AS) identifies the requirements for mitigating Counterfeit EEE parts in the Authorized Distribution Channel. If an organization is not performing Authorized Distribution but acting as another seller (such as an Authorized Reseller, Broker, or Independent Distributor), then only 3.3.1 applies
G-19 Counterfeit Electronic Parts Committee
This specification covers an alpha-beta Ti-6Al-4V alloy produced by laser powder bed fusion (L-PBF) additive manufacturing and subjected to hot isostatic press (HIP) operation. Typically, this material is used for complex-shaped aerospace products made to near net shape dimensions. These products have been used typically for parts requiring operating strength up to 750 °F (399 °C), but usage is not limited to such applications
AMS AM Additive Manufacturing Metals
SAE J1978-2 specifies a complementary set of functions to be provided by an OBD-II scan tool. These functions provide complete, efficient access to all regulated OBD services on any vehicle that is compliant with SAE J1979-2 and SAE J1979-3 The content of this document is intended to satisfy the requirements of an OBD-II scan tool as required by current U.S. OBD regulations. This document specifies: A means of establishing communications between an OBD-equipped vehicle and an OBD-II scan tool. A set of diagnostic services to be provided by an OBD-II scan tool in order to exercise the services defined in SAE J1979-2. The presentation of the SAE J1978 document family, where SAE J1978-2 covers second generation protocol functionality defined in SAE J1979-2, and SAE J1978-1 covers first generation protocol functionality defined in SAE J1979 and protocol determination for both SAE J1979 and SAE J1979-2. The SAE J1978 document family does not preclude the inclusion of additional capabilities
Vehicle E E System Diagnostic Standards Committee
This SAE Aerospace Recommended Practice (ARP) provides guidance for the design and location of cabin crew stations, including emergency equipment installations at or near such stations, to enable the cabin crew to perform effectively in emergency situations, including emergency evacuations. Recommendations regarding design of cabin crew stations apply to all such stations; recommendations regarding location apply to those stations located near or adjacent to floor level exits
S-9B Cabin Interiors and Furnishings Committee
This specification covers the design and installation requirements for Type I and II military aircraft hydraulic systems
A-6A2 Military Aircraft Committee
Items per page:
1 – 50 of 212826