Search
Advanced Search
of the following are true
(
)

Results

Items (211,724)
The purpose of this document is to provide a standard for aircraft fuselage markings located at the doors used for ground servicing operations. These markings can be used by all GSE that will dock at the aircraft. These markings may be used for one or several phases of the GSE positioning relative to the aircraft process: GSE alignment during approach, GSE final docking, and GSE auto leveling. It is not the purpose of this standard to describe the different technologies, cameras, or other equipment that can be mounted on GSE to utilize these markings. The aircraft that may use these markings will have a fuselage diameter of 3 m or more.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Standard (AS) provides requirements for design and installation of aircraft jacking pad adapters and the mating jack socket interface to permit use of standard jacking equipment to be used in civil and military transport aircraft. The adapter defined herein shall be the key interface between the aircraft and the aircraft jack(s).
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Recommended Practice is intended to establish a procedure to certify the fundamental driving skill levels of professional drivers. This certification can be used by the individual driver to qualify their skills when seeking employment or other professional activity. These certification levels may also be used by test facilities or other organizations when seeking test or professional drivers of various skills. The associated family of documents listed below establish driving skill criteria for various specific categories. SAE J3300: Driving level SAE J3300/1: Low mu/winter driving SAE J3300/2: Trailer towing SAE J3300/3: Automated driving Additional certifications to be added as appropriate. This main document provides: (1) common definitions and general guidance for using this family of documents, (2) directions for obtaining certification through Probitas Authentication®1, and (3) driving level examination requirements.
Driving Skills Standards Committee
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes additional performance requirements specifically for road illumination devices using light emitting diode (LED) sources.
Road Illumination Devices Standards Committee
This SAE Standard provides test procedures, performance requirements, and guidelines for semiautomatic headlamp beam switching devices.
Road Illumination Devices Standards Committee
This SAE Standard provides test procedures and performance requirements for off-highway vehicle headlamps.
Special Purpose Vehicle Committee
This SAE Aerospace Standard (AS) defines interface configurations for the ground air conditioning service connection on commercial transport aircraft. In addition, it defines the clearances required to accommodate the connection of ground air conditioning hose couplings. Two types of service connections are included. The Type A connection (Figure 1) is a slotted ring with integral locking pads and is comparable to the MS33562 connection. The Type B connection (Figure 2) is a flanged tube with external locking lugs (Figure 3). The Type B connection has the same interface dimensional requirements as the Type A connection.
AGE-3 Aircraft Ground Support Equipment Committee
The purpose of this specification is to provide airplane operators and tow vehicle manufacturers with: a General design and operating requirements pertinent to test and evaluation of towbarless tow vehicles. Specific design requirements are provided in ARP4852 and ARP4853. b Test and evaluation requirements. The results of these test evaluations will determine if the loads induced by the tow vehicle will exceed the design loads of the nose gear, or are within the aircraft manufacturer’s limits so that they do not affect the certified safe limit of the nose gear. The results of these test evaluations will also determine if a stability problem may occur during pushback and/or maintenance towing operations with the tested airplane/tow vehicle combination. This document specifies general test requirements and a test evaluation procedure for towbarless tow vehicles (TLTV) intended for pushback and maintenance towing only. It is not meant for dispatch (operational) towing (see definitions in
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) is applicable to any type of aerospace ground support vehicle, powered or unpowered.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Information Report (AIR) describes the characteristics and effects of using no-break power transfer (NBPT) methods when switching between auxiliary-power unit (APU) and ground-power unit (GPU). The GPU may be: a Point-of-use solid-state frequency converter, engine-generator, or motor-generator b Central system powered by motor-generator or solid-state frequency converter
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) outlines the design and performance requirements for a battery-powered electric tow tractor for the handling of baggage or cargo trailers in airline service. The use of “shall” in this document indicates a mandatory requirement. The use of “should” indicates a recommendation or that which is advised but not required.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) specifies dimensional and physical requirements of tow bar connections to tractor and aircraft (see Figure 1). It is applicable to all types of commercial transport category aircraft tow bar. The purpose of this SAE Aerospace Recommended Practice (ARP) is to standardize tow bar attachments to airplane and tractor according to the mass category of the towed aircraft, so that one tow bar head with different shear levels can be used for all aircraft that are within the same mass category and are manufactured in compliance with AS1614 or ISO 8267.
AGE-3 Aircraft Ground Support Equipment Committee
This document is a guideline for format, structure and content for ground support equipment (GSE) technical manuals. This document focuses on requirements specific to the GSE industry and does not cover general technical publication practices. Additional standards for GSE and for manufacturer’s publications exist and may add requirements beyond what is covered in this standard. This may include EU Directive 2006/42/EC. This document is written in specific terms by intention, and conforms to recognized practices in the industry. When the word SHALL is used in this standard, it indicates a requirement that must be adhered to in total and does not allow for variance. When the word SHOULD is used, it indicates a recommended practice which allows the manual writer to use discretionary judgment. This document does not apply to electronic test equipment.
AGE-3 Aircraft Ground Support Equipment Committee
This Aerospace Information Report (AIR) is presented in two parts. The first part is simply a summarization of design factors that must be considered in establishing vehicle specifications and design characteristics. The second part refers particularly to the performance characteristics of an aircraft tow tractor. Some definitions, formulas, data, and an example are provided mainly for assisting the specifying engineers of potential buyers and users of aircraft tow tractors in the evaluation and comparison of their requirements with the performance capabilities of the various tow tractors offered by the tow tractor manufacturers. Although the design engineers could also use the formulas and data in their calculations of the performance specifications of aircraft tow tractors, this AIR is not intended to provide the methods and all data necessary for detailed calculations and design of an aircraft tow tractor.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) outlines the design and functional requirements for aircraft passenger lifts, operated manually and self-propelled. The primary function of the lift described in this document is to act as an elevator between ground level and aircraft doorsills to a maximum of 144 in.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Information Report (AIR) is intended to cover all airport 50 or 60 Hz electrical systems as well as all electrical utilization equipment that is attached to those systems.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) describes a two-pole electric connector for use in battery powered ground support equipment, i.e., traction batteries. Alternatively, the connector can have two or more auxiliary contacts for auxiliary circuits. A handle may be added as an option to assist in connecting and disconnecting.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) outlines the functional and design requirements for a b self-propelled belt conveyor for handling baggage and cargo at aircraft bulk cargo holds. Additional considerations and requirements may legally apply in other countries. As an example, for operation in Europe (E.U. and E.F.T.A.), the applicable EN standards shall be complied with.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Standard (AS) specifies the interface requirements for tow bar attachment fittings on the nose gear (when towing operations are performed from the nose gear) of conventional tricycle type landing gears of commercial civil transport aircraft with a maximum ramp weight higher than 50,000 kg (110,000 pounds), commonly designated as “main line aircraft”. Its purpose is to achieve tow bar attachment fittings interface standardization by aircraft weight category (which determines tow bar forces) in order to ensure that one single type of tow bar with a standard connection can be used for all aircraft types within or near that weight category, so as to assist operators and airport handling companies in reducing the number of different tow bar types used.
AGE-3 Aircraft Ground Support Equipment Committee
The following recommendations and suggestions are made for consideration for procurement of new equipment, or modification to existing equipment where practical. Excluded from this AIR is mobile ground equipment, such as fork lift trucks and front end loaders, that have a functional requirement for simultaneous vehicle motion and accessory operation.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) applies to Point-Of-Use, Central and Mobile Pre-Conditioned Air Equipment. It does not apply to aircraft mounted equipment.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) covers the design and installation requirements for hydraulic systems (up to 8000 psig [56 MPa]) for ground support equipment (GSE). This ARP is derived from AS5440, which provides hydraulic system requirements for aircraft. The recommendations herein are primarily intended for GSE that exchange hydraulic fluid with the aircraft, such as hydraulic service carts, rather than GSE with non-interfacing hydraulic systems. The GSE may be mobile, portable, or stationary.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) applies to airline trailer equipment with four wheel running gear pulled and steered through an integral tow bar, for use on airport ramps and other airport areas for transporting baggage, freight, and other materials. This ARP can apply to any airline/airport trailer chassis regardless of its equipment; the trailer bed can be designed to carry either bulk baggage/cargo, or a cargo unit load device by means of a rollerized conveyor system, or a piece of aircraft servicing equipment (e.g., ground power unit, air start unit, etc.).
AGE-3 Aircraft Ground Support Equipment Committee
This document covers the general requirements for hydraulic aircraft jacks. It can be applied to tripod, unipod, and axle jacks that may be used on open ramp areas as well as in the aircraft hangar. Throughout this Aerospace Standard, the minimum essential criteria are identified by the key word “shall”. Recommended criteria are identified by use of the key word “should”. Deviation from recommended criteria should only occur after careful consideration and thorough service evaluation have shown alternate methods to provide an equivalent level of safety. The term “vertical load” throughout this Aerospace Standard is defined as the force imposed on the aircraft jack at the airframe jack point.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) discusses damage to aircraft fuselages caused by ground equipment contact at servicing and recommends methods to be incorporated or considered in ground equipment design for protection against that damage.
AGE-3 Aircraft Ground Support Equipment Committee
This specification covers procedures for sampling and testing aircraft-quality, special aircraft-quality, and premium aircraft-quality steels requiring transverse tensile property testing.
AMS E Carbon and Low Alloy Steels Committee
This SAE Recommended Practice establishes consistent test procedures for determination of steady-state directional control properties for passenger cars and light trucks with two axles. These properties include the steering-wheel angle gradient, reference steer angle gradient, sideslip angle gradient, vehicle roll angle gradient, and steering-wheel torque gradient with respect to lateral acceleration. They also include the yaw velocity gain, lateral acceleration gain, and sideslip angle gain with respect to steering-wheel angle. Additionally, the characteristic or critical speed and the front and rear wheel steer compliances may be determined.
Vehicle Dynamics Standards Committee
IEEE-1394b, Interface Requirements for Military and Aerospace Vehicle Applications, establishes the requirements for the use of IEEE Std 1394™-2008 as a data bus network in military and aerospace vehicles. The portion of IEEE Std 1394™-2008 standard used by AS5643 is referred to as IEEE-1394 Beta (formerly referred to as IEEE-1394b.) It defines the concept of operations and information flow on the network. As discussed in 1.4, this specification contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards and assumes the reader already has a working knowledge of IEEE-1394. This document is referred to as the “base” specification, containing the generic requirements that specify data bus characteristics, data formats, and node operation. It is important to note that this specification is not designed to be stand-alone; several requirements leave the details to the implementations and delegate the actual implementation to be specified by the network architect/integrator for a
AS-1A Avionic Networks Committee
This specification covers two methods for determining the percentage of delta ferrite in steels and other iron alloys. When applicable, this specification will be invoked by the material specification.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an arc-cast molybdenum alloy in the form of round bars 0.125 to 4.5 inches (3.00 to 112.50 mm), inclusive (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers beryllium in the form of sheet and plate produced by hot rolling beryllium with nominal thicknesses from 0.020 to 1.000 inches (0.51 to 25.4 mm), inclusive (see 8.5).
AMS G Titanium and Refractory Metals Committee
This specification establishes the requirements for chemical-film (conversion) coatings on aluminum alloys.
AMS B Finishes Processes and Fluids Committee
This specification covers an aluminum alloy in the form of extruded wide panel profiles (shapes) and rod and bars 0.500 to 1.000 inch (12.7 to 25.4 mm), inclusive, in thickness produced with cross-sectional area of 14 to 30 square inches (90 to 194 cm2) from circumscribing circle diameters (see 2.4.1) of 14 to 22 inches (356 to 559 mm) (see 8.7).
AMS D Nonferrous Alloys Committee
This specification covers a free-machining, corrosion-resistant steel in the form of cold-worked bars and wire up to 1.750 inches (44.45 mm), inclusive, in nominal diameter or least distance between parallel sides (see 8.4).
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of plate 0.500 to 1.500 inches (12.70 to 38.10 mm), inclusive, in thickness (see 8.5).
AMS D Nonferrous Alloys Committee
This SAE Standard outlines the requirements for a preformed thermosetting hose intended for use in heavy-duty vehicle engines, such as air cleaner inlet, crank case vent, or air cleaner to turbo or to engine inlet.
Non-Hydraulic Hose Committee
This specification covers an aluminum alloy in the form of alclad sheet and plate 0.008 to 1.000 inches (0.203 to 25.4 mm) supplied in the -T3/-T351 temper (see 8.5).
AMS D Nonferrous Alloys Committee
This specification establishes requirements for thermoset protective coatings in powder form.
AMS G8 Aerospace Organic Coatings Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars and forgings in the solutioned, stabilized, and precipitation heat-treated condition. Stock for forging shall be in the condition ordered.
AMS F Corrosion and Heat Resistant Alloys Committee
This standard describes test methods for insulated, single conductor, electric wire intended for aerospace applications. Particular requirements for the wire being tested need to be specified in a procurement document or other detail specification. Suggested minimum requirements are included in the notes at the end of some of the test methods. SAE Performance Standard AS4372 uses some of the tests in this document for evaluating comparative performance of aerospace wires.
AE-8D Wire and Cable Committee
Items per page:
1 – 50 of 211724