Search
Advanced Search
of the following are true
(
)

Results

Items (215,745)
The scope of this report is to establish applicable definitions and terms prior to considering the application domain and use cases in HVDC applications. The report describes the specificities of the pyrotechnic actuator for use within a power-switching device with performances and main characteristics to consider for aerospace application.
AE-10 High Voltage Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This SAE Aerospace Standard (AS) specifies the interface requirements for tow bar attachment fittings on the nose gear (when towing operations are performed from the nose gear) of conventional tricycle type landing gears of commercial civil transport aircraft with a maximum ramp weight higher than 50,000 kg (110,000 pounds), commonly designated as “main line aircraft”. Its purpose is to achieve tow bar attachment fittings interface standardization by aircraft weight category (which determines tow bar forces) in order to ensure that one single type of tow bar with a standard connection can be used for all aircraft types within or near that weight category, so as to assist operators and airport handling companies in reducing the number of different tow bar types used.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) specifies dimensional and physical requirements of tow bar connections to tractor and aircraft (see Figure 1). It is applicable to all types of commercial transport category aircraft tow bar. The purpose of this SAE Aerospace Recommended Practice (ARP) is to standardize tow bar attachments to airplane and tractor according to the mass category of the towed aircraft, so that one tow bar head with different shear levels can be used for all aircraft that are within the same mass category and are manufactured in compliance with AS1614 or ISO 8267.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Recommended Practice is applicable to all heat exchangers used in vehicle and industrial cooling systems. This document outlines the tests to determine the heat transfer and pressure drop performance of heat exchangers under specified conditions. This document has been reviewed and revised by adding several clarifying statements to Section 4.
Cooling Systems Standards Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This SAE Recommended Practice applies to mobile cranes when used in lifting crane service that are equipped with boom length indicating devices.
Cranes and Lifting Devices Committee
AMS4269C has been declared “STABILIZED” by SAE AMS Committee D Nonferrous Alloys and will no longer be subjected to periodic reviews for currency. Users are responsible for verifying references and continued suitability of technical requirements. Newer technology may exist.
AMS D Nonferrous Alloys Committee
This specification covers one type of copper-beryllium alloy in the form of sheet, strip, and plate (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers a titanium alloy in the form of bars up through 4.000 inches (101.60 mm) in nominal diameter or least distance between parallel sides, inclusive, and stock for forging of any size (see 8.7).
AMS G Titanium and Refractory Metals Committee
This document provides vehicle-level data collection, data analysis, and data verification procedures that may be used to verify that an instrument under test (IUT) satisfies the vehicle-level requirements specified in SAE J3161/1. For the purposes of this report, “vehicle-level requirements” primarily consist of those requirements which can be verified external to the vehicle. The IUT for these procedures is a configured LTE-V2X vehicle-to-vehicle (V2V) device as defined in SAE J3161/1 and is installed on a vehicle of class 2, 3, 4, or 5. While the IUT is conceptually separated from the vehicle it is installed on, the tests outlined in this document are primarily vehicle level, so the terms “vehicle” and “IUT” can generally be considered interchangeable. Additionally, non-vehicle-level complementary tests, not included in this document, are required to verify that the entire set of requirements specified in SAE J3161/1 is satisfied. This document also includes a Traceability Matrix to
C-V2X Technical Committee
This specification covers an aluminum alloy in the form of sheet and plate, alclad both sides, supplied in the -T361 temper.
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of alclad sheet and plate 0.020 to 0.500 inch (0.508 to 12.70 mm), inclusive, in thickness, supplied in the -T361 temper (see 8.5).
AMS D Nonferrous Alloys Committee
This SAE Aerospace Standard defines a typical coupling (with different fitting end styles), which is used in typical cone connection fittings installed in high-pressure (up to 3000 psi) oxygen systems for the purpose of mating to applicable oxygen equipment. Dimensions are developed from AND10089 and AS4375.
A-10 Aircraft Oxygen Equipment Committee
This SAE Recommended Practice provides test procedures, requirements, and guidelines for high-mounted stop lamps and high-mounted turn signal lamps intended for use on vehicles 2032 mm or more in overall width. This document applies to trucks, motor coaches, van type trailers, and other vehicles with permanent structure greater than 2800 mm high. This document does not apply to school buses, truck tractors, pole trailers, flat-bed trailers, pick-up trucks with dual wheels, and trailer converter dollies. The purpose of the high-mounted stop lamp(s) and high-mounted turn signal lamp(s) is to provide a signal to the driver of following (approaching a signaling vehicle from the rear) or oncoming (approaching a signaling vehicle from the front) vehicles over intervening vehicles.
Heavy Duty Lighting Standards Committee
This SAE Aerospace Information Report (AIR) covers, and is restricted to, hands-on servicing/ maintenance of industrial lead acid batteries used solely for motive power and exclusively for ground support equipment (GSE). It does not address or pertain to automotive-type SLI (starting-lighting-ignition) batteries or any other types of batteries (such as nickel-cadmium, zinc, or lithium batteries) which may be on-board airport GSE for either motive power or auxiliary uses. Similarly, the battery servicing and charging facilities described herein are those intended exclusively for industrial lead acid batteries.
AGE-3 Aircraft Ground Support Equipment Committee
This document provides information on the preparation and use of video for operational and maintenance training of qualified personnel associated with GSE.
AGE-3 Aircraft Ground Support Equipment Committee
The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide recommendations which will lead to the standardization of interior door design and operation in all transport aircraft. Interior doors are broadly classified into two main categories which include egress path doors and non-egress path doors. The scope of this ARP does not include crew rest doors, secondary barriers to the flight deck, or doors incorporated in furniture surrounding passenger seats as defined in AS6960.
S-9B Cabin Interiors and Furnishings Committee
This SAE Aerospace Recommended Practice (ARP) is written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in constructing new or adding to existing engine test cell facilities.
EG-1E Gas Turbine Test Facilities and Equipment
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 130 ksi (895 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
This SAE Recommended Practice describes a laboratory test procedure and requirements for evaluating the characteristics of heavy-truck steering control systems under simulated driver impact conditions, as well as driver entry/egress conditions. The test procedure employs a torso-shaped body block that is impacted against the steering wheel.
Truck Crashworthiness Committee
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry.
Engine Power Test Code Committee
This document defines a physical layer having a robust immunity to EMI and physical properties suitable for harsh environments. CAN controllers are available which support the CAN Flexible Data Rate Frame Format. These controllers, when used on SAE J1939-11 networks, must be restricted to use only the Classical Frame Format compliant to ISO 11898-1:2015. These SAE Recommended Practices are intended for light- and heavy-duty vehicles on- or off-road as well as appropriate stationary applications which use vehicle derived components (e.g., generator sets). Vehicles of interest include but are not limited to: on- and off-highway trucks and their trailers; construction equipment; and agricultural equipment and implements.
Truck and Bus Control and Communications Network Committee
This document provides the technical requirements for implementing the SAE J1939 Functional Safety Communication Protocol in a manner determined suitable for meeting industry applicable functional safety standards.
Truck and Bus Control and Communications Network Committee
SAE J1979/ISO 15031-5 set includes the communication between the vehicle’s OBD systems and test equipment implemented across vehicles within the scope of the legislated emissions-related OBD. To achieve this, it is based on the Open Systems Interconnection (OSI) Basic Reference Model in accordance with ISO/IEC 7498-1 and ISO/IEC 10731, which structures communication systems into seven layers. When mapped on this model, the services specified are broken into: — Diagnostic services (layer 7), specified in: — ISO 15031-5/SAE J1979 (emissions-related OBD), — ISO 27145-3 (WWH-OBD), — Presentation layer (layer 6), specified in: — ISO 15031-2, SAE J1930-DA, — ISO 15031-5, SAE J1979-DA, — ISO 15031-6, SAE J2012-DA, — ISO 27145-2, SAE J2012-DA, — Session layer services (layer 5), specified in: — ISO 14229-2 supports ISO 15765-4 DoCAN and ISO 14230-4 DoK-Line protocols, — ISO 14229-2 is not applicable to the SAE J1850 and ISO 9141-2 protocols, — Transport layer services (layer 4), specified in
Vehicle E E System Diagnostic Standards Committee
This document applies to safety observers or spotters involved with the use of outdoor laser systems. It may be used in conjunction with AS4970.
G-10T Laser Safety Hazards Committee
This SAE Aerospace Recommended Practice (ARP) defines lightning strike zones and provides guidelines for locating them on particular aircraft, together with examples. The zone definitions and location guidelines described herein are applicable to Parts 23, 25, 27, and 29 aircraft. The zone location guidelines and examples are representative of in-flight lightning exposures.
AE-2 Lightning Committee
This specification covers a heat-treatable, corrosion-resistant steel in the form of bars, wire, forgings, mechanical tubing, and stock for forging or heading.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of welding wire.
AMS F Corrosion and Heat Resistant Alloys Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This SAE Aerospace Information Report (AIR) establishes guidelines for evaluating composite electrical connectors and accessories.
AE-8C1 Connectors Committee
This document describes a physical layer utilizing Unshielded Twisted Pair (UTP) cable with extended stub lengths for flexibility in ECU placement and network topology. Also, connectors are not specified. CAN controllers used on SAE J1939-15 networks must be restricted to use only Classical Frames as defined in ISO 11898- 1. A network which may have legacy controllers cannot tolerate FD Frames. These SAE Recommended Practices are intended for light- and heavy-duty vehicles on- or off-road as well as appropriate stationary applications which use vehicle derived components (e.g., generator sets). Vehicles of interest include, but are not limited to: on- and off-highway trucks and their trailers; construction equipment; and agricultural equipment and implements.
Truck and Bus Control and Communications Network Committee
This document provides recommendations to vehicle manufacturers, ECU developers, and other device suppliers in securing the SAE J1939 network from cybersecurity risks. This document focuses on security measures related to on-vehicle network architecture and security measures for communication interfaces between devices, ECUs, or networks. The focus is on security related to network communications on the vehicle side of off-vehicle interfaces, such as the SAE J1939-13 connector. The recommendations in this document aim to address cybersecurity risks presented by communication between the vehicle and the rest of the supporting ecosystem via the vehicle networks. The risk focus is on safety and operational risks, although other risks are possible. This document should be used as a reference to current best practices for addressing off-vehicle communication security. This document focuses on recommendations related to the Secure Architecture and Secure Connectivity aspects of vehicle
Truck and Bus Control and Communications Network Committee
SAE J1939-31 network layer describes the requirements and services for network interconnection ECUs (NIECU) that enable electronic control units (ECUs) on an SAE J1939 network segment to intercommunicate with other ECUs on different network segments of the vehicle or system network. This document defines various types of NIECUs. The information in this document applies only to ECUs that are intended to provide networking services. It is not necessary for an ECU to provide any of these services in order to be compliant with the SAE J1939 protocol.
Truck and Bus Control and Communications Network Committee
SAE J1939-81 (“Network Management”) defines the processes and messages associated with managing the addresses of applications communicating on an SAE J1939 network. Network management is concerned with the management of addresses and the association of those addresses with an actual function and with the detection and reporting of network related errors. Due to the nature of management of addresses, network management also specifies address selection and address claiming processes, requirements for reaction to brief power outages, and minimum requirements for ECUs on the network.
Truck and Bus Control and Communications Network Committee
Items per page:
1 – 50 of 215745