Results
This SAE Recommended Practice is intended for use by engine manufacturers in determining the Fluidity/Miscibility Grades to be recommended for use in their engines and by oil marketers in formulating and labeling their products.
Employing “ball-on-ring” philosophy, a nonrotating steel ball is held in a vertically mounted chuck and, using an applied load, is forced against an axially mounted steel rotating ring. The test ring is rotated at a fixed speed while being partially immersed in a lubricant reservoir. This maintains the ring in a wet condition and continuously transports a lubricating film of test fluid to the ball and ring interface. The diameter of the wear scar generated on the test ball is used as a measure of the fluid’s lubricating properties. The apparatus can be used by adjusting the operating conditions to reproduce two different wear mechanisms. Therefore, the ALTE can assess a lubricant’s performance in that regard. These mechanisms are described below.
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in Title 14, Code of Federal Regulations (14 CFR) parts 23, 25, 27, or 29 (as applicable to the seat type). Two formats of this standard (MS Excel and Adobe PDF) are available. The standards provided in both formats (MS Excel and Adobe PDF) contain the same text.
This SAE Standard provides testing and functional requirements to meet specified minimum performance criteria for electronic probe-type leak detectors, so they will identify smaller refrigerant leaks when servicing all motor vehicle air conditioning systems, including those engineered with improved sealing and smaller refrigerant charges to address environmental concerns and increase system efficiency. This document does not address any safety issues concerning their design or use.
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings.
This procedure establishes a recommended practice for performing a Low Speed Thorax Impact Test to the Hybrid III Small Female Anthropomorphic Test Device (ATD or crash dummy). This test was created to satisfy the demand by the industry to have a certification test which results in peak chest deflection similar to current full vehicle, frontal impact tests. An inherent problem exists with the current certification procedure because the normal (6.7 m/s) thorax impact test has test results for peak chest deflection that are greater than those currently seen in full vehicle, frontal tests. The intent of this document is to develop a low speed thorax certification procedure for the H-III5F dummy with a 3.0 m/s impact similar to the SAE J2779 procedure for the H-III50M dummy.
The purpose of this document is to provide the user with the procedures needed to properly assemble and disassemble the 50th percentile male Hybrid III dummy, certify its components and verify its mass and dimensions. Also within this manual are guidelines for handling accelerometers, repairing flesh and setting joints.
This SAE Aerospace Standard (AS) defines the requirements for a lightweight polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in high temperature, 400 °F, high pressure, 3000 psi, aircraft hydraulic systems, also for use in pneumatic systems which allow some gaseous diffusion through the PTFE wall.
This SAE Surface Vehicle Information Report identifies and defines the drawings and parts relating to the use of the Hybrid III Large Male Test Dummy.
This procedure establishes a recommended practice for establishing the sensitivity of the chest displacement potentiometer assembly used in the Hybrid III family of Anthropomorphic Test Devices (ATDs, or crash dummies). This potentiometer assembly is used in the Hybrid III family to measure the linear displacement of the sternum relative to the spine (referred to as chest compression). An inherent nonlinearity exists in this measurement because a rotary potentiometer is being used to measure a generally linear displacement. As the chest cavity is compressed the potentiometer rotates, however the relationship between the compression and the potentiometer rotation (and voltage output) is nonlinear. Crash testing facilities have in the past used a variety of techniques to calibrate the chest potentiometer, that is to establish a sensitivity value (mm/(volt/volt) or mm/(mvolt/volt)). These sensitivity values are used to convert recorded voltage measurements to engineering units, in this
This user’s manual covers the instrumented arm for the Hybrid III 5th Percentile Small Female dummy as well as the SID –IIs dummy. It is intended for technicians and engineers who have an interest in assessing arm injury from the use of frontal and side impact airbags. It covers the construction, disassembly and reassembly, available instrumentation, and segment masses.
This document provides a method/procedure for specifying the properties of vulcanized elastomeric materials (natural rubber or synthetic rubbers, alone or in combination) that are intended for, but not limited to, use in rubber products for automotive applications. This document covers materials that do not contain any re-use, recycled, or regrind materials unless otherwise agreed to by manufacturer and end user. The use of such materials, including maximum percent, must be specified using a “Z” suffix. This classification system covers thermoset High Consistency Elastomers (HCEs) only. Thermoplastic Elastomer (TPE) materials are classified using SAE J2558. Silicone Formed In Place Gasket (FIPG) systems such as Room Temperature Vulcanized (RTV) Silicones, and Liquid Silicone Rubber (LSR) systems are classified using ASTM F2468.
This method is intended to define the continuous upper temperature limit (CUTL) of thermoplastic elastomers and thermoset rubber with durometer hardness <=90 Shore A, to oxidation or other degradation when exposed solely to hot air for an extended period of time.
SAE J4001 provides instruction for evaluating levels of compliance to SAE J4000. Component text (Sections 4 to 9) from SAE J4000 is included for convenience during the evaluation process. Applicable definitions and references are contained in SAE J4000. SAE J4000 tests lean implementation within a manufacturing organization and includes those areas of direct overlap with the organization’s suppliers and customers. If applied to each consecutive organizational link, an enterprise level evaluation can be made. SAE J4001 relates the following approximate topic percentages to the implementation process as a whole: SAE J4001 is to be applied on a specific component basis. Each of the 52 components tests part of, one, or multiples of the specific requirements of lean implementation. Implementation throughout an organization may be measured by evaluating all of the components. The level of compliance for each component relative to best practice may be used as a reference by an organization to
This SAE Standard covers fittings intended for connecting service hoses, per SAE J2196, from Mobile Air-Conditioning Systems to service equipment such as manifold gauges, vacuum pumps and air conditioning charging, recovery and recycling equipment. (Figure 1)
This FMEA standard describes potential failure mode and effects analysis in design (DFMEA), supplemental FMEA-MSR, and potential failure mode and effects analysis in manufacturing and assembly processes (PFMEA). It assists users in the identification and mitigation of risk by providing appropriate terms, requirements, rating charts, and worksheets. As a standard, this document contains requirements—”must”—and recommendations—”should”—to guide the user through the FMEA process. The FMEA process and documentation must comply with this standard as well as any corporate policy concerning this standard. Documented rationale and agreement with the customer are necessary for deviations in order to justify new work or changed methods during customer or third-party audit reviews.
To establish a specification for software input and output interfaces for condition monitoring and performance programs used to monitor equipment from multiple manufacturers. The purpose of standardizing these interfaces is to improve operational flexibility and efficiency of monitoring systems as an aid to cost effectiveness (e.g., easier implementation).
This document specifies a multipoint, digital, serial interface that incorporates other interface standards such as EIA-485 and the nine bit interrupt mode of many microcontrollers. Standardized interfaces are critical to the development of an "open" HUMS architecture.
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry.
This procedure establishes a recommended practice for performing a lumbar flexion test to the Hybrid III 50th male anthropomorphic test device (ATD or crash dummy). This test was created to satisfy the demand from industry to have a certification test which characterizes the lumbar without interaction of other dummy components. In the past, there have not been any tests to evaluate the performance of Hybrid III 50th lumbar.
This procedure establishes a recommended practice for performing a Low Speed Knee Slider test to the Hybrid III 50th Male Anthropomorphic Test Device (ATD or crash dummy). This test was created to satisfy the demand from industry to have a certification test which produces similar results to an actual low energy automotive impact test. An inherent problem exists with the current certification procedure because the normal (2.75 m/s) knee slider test has test corridors that do not represent typical displacements seen in these low energy impact tests. The normal test corridors specify a force requirement at 10 mm and at 18 mm, while the low speed test needs to have a peak displacement around 10 mm.
This Aerospace Recommended Practice (ARP) defines acceptable methods for determining the seat reference point (SRP), and the documentation requirements for that determination, for passenger and crew seats in Transport Aircraft, Civil Rotorcraft, and General Aviation Aircraft.
This SAE Standard covers reinforced rubber, reinforced thermoplastic, or otherwise constructed hose, or hose assemblies, intended for conducting liquid and gaseous refrigerants for service connections from mobile air conditioning systems to service equipment such as a manifold gauge set and vacuum pumps or for use internally, in charging stations or service equipment intended for use in servicing mobile air-conditioning systems.
Items per page:
50
1 – 50 of 211756