Results
This SAE Aerospace Standard (AS) provides requirements for design and installation of aircraft jacking pad adapters and the mating jack socket interface to permit use of standard jacking equipment to be used in civil and military transport aircraft. The adapter defined herein shall be the key interface between the aircraft and the aircraft jack(s).
This SAE Recommended Practice is intended to establish a procedure to certify the fundamental driving skill levels of professional drivers. This certification can be used by the individual driver to qualify their skills when seeking employment or other professional activity. These certification levels may also be used by test facilities or other organizations when seeking test or professional drivers of various skills. The associated family of documents listed below establish driving skill criteria for various specific categories. SAE J3300: Driving level SAE J3300/1: Low mu/winter driving SAE J3300/2: Trailer towing SAE J3300/3: Automated driving Additional certifications to be added as appropriate. This main document provides: (1) common definitions and general guidance for using this family of documents, (2) directions for obtaining certification through Probitas Authentication®1, and (3) driving level examination requirements.
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry.
IEEE-1394b, Interface Requirements for Military and Aerospace Vehicle Applications, establishes the requirements for the use of IEEE Std 1394™-2008 as a data bus network in military and aerospace vehicles. The portion of IEEE Std 1394™-2008 standard used by AS5643 is referred to as IEEE-1394 Beta (formerly referred to as IEEE-1394b.) It defines the concept of operations and information flow on the network. As discussed in 1.4, this specification contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards and assumes the reader already has a working knowledge of IEEE-1394. This document is referred to as the “base” specification, containing the generic requirements that specify data bus characteristics, data formats, and node operation. It is important to note that this specification is not designed to be stand-alone; several requirements leave the details to the implementations and delegate the actual implementation to be specified by the network architect/integrator for a
This standard covers jacketed multi-conductor copper data cables for aerospace use.
This SAE Recommended Practice describes a test method for measuring the forces and moments generated at a high frequency response spindle when a rolling tire impacts a cleat. The cleat is configured either with its crest perpendicular, 90 degrees, to the path of the tire or optionally with its crest inclined at an angle to the path of the tire. The carriage to which the spindle is attached is rigidly constrained in position during each test condition to provide a good approximation to fixed loaded radius operation. The method discussed in this document provides impact force and moment time histories essentially free from variations due to tire non-uniformities. The method applies to any size tire so long as the equipment is properly scaled to conduct the measurements for the intended test tire. The data are suitable for use in determining parameters for road load models and for comparative evaluations of the measured properties in research and development.
This SAE Aerospace Standard (AS) establishes minimum requirements for eddy current inspection of circular holes in nonferrous, metallic, low conductivity (less than 5% IACS) aircraft engine hardware with fasteners removed. The inspection is intended to be performed at maintenance and overhaul facilities on engine run hardware.
This specification covers a thermally-stabilized, irradiated, modified fluoropolymer in the form of very-thin-wall tubing.
This specification covers polyvinyl chloride insulated single conductor electric wires made with tin-coated copper conductors or silver-coated copper alloy conductors. The polyvinyl chloride insulation of these wires may be used alone or in combination with other insulating or protective materials.
This test method provides performance data on candidate insulation systems as a function of time and temperature. These data give engineering information on the wire insulation candidate relative to the performance of materials already in use with a backlog of experience. These tests expose candidate insulation systems to a wide range of temperatures for short and long periods of time, while measuring the degradation of its physical properties. For aerospace use, end-point proof tests include mandrel bend, water soak, and dielectric integrity.
This specification covers requirements for material used in electrical insulating heat shrinkable components. The continuous operating temperature of these materials shall range from -75°C to +200°C (-103°F to +392°F). (See 6.1).
This specification covers an irradiated, thermally-stabilized, flame-resistant, modified silicone rubber in the form of heat shrinkable tubing.
This specification covers concentric lay stranded and rope-lay stranded round electrical conductor fabricated from copper, copper alloy or aluminum. This specification also covers thermocouple extension conductor fabricated from nickel/chromium or nickel/aluminum/manganese. The conductors in this specification are suitable for use in insulated wires used in aerospace and other applications.
Items per page:
50
1 – 50 of 211724