Search
Advanced Search
of the following are true
(
)

Results

Items (211,743)
The purpose of this document is to provide a standard for aircraft fuselage markings located at the doors used for ground servicing operations. These markings can be used by all GSE that will dock at the aircraft. These markings may be used for one or several phases of the GSE positioning relative to the aircraft process: GSE alignment during approach, GSE final docking, and GSE auto leveling. It is not the purpose of this standard to describe the different technologies, cameras, or other equipment that can be mounted on GSE to utilize these markings. The aircraft that may use these markings will have a fuselage diameter of 3 m or more.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Standard (AS) specifies requirements for the interface between a rotational system indexing sensor and its interface electronics. These sensors generate one or more electrical pulses for each revolution of the shaft being monitored. These pulses can be used to determine the actual shaft rotational speed and/or position for use in a Health and Usage Monitoring System (HUMS). Indexing sensors are used in the following HUMS areas on the aircraft: (a) rotor track and balance, (b) engine vibration monitoring and diagnostics, (c) drive train vibration monitoring and diagnostics. The goal of this standardization effort is to be able to take any compliant indexing sensor and connect it to any compliant interface electronics. These SAE HUMS Interface Specifications include the minimal interface and performance requirements for interoperability with the Rotorcraft Industry Technology Association (RITA) compliant HUMS. Compliance with these Interface Specifications can be
HM-1R Rotorcraft Integrated Vehicle Health Management
Blade trackers measure: (a) rotor blade height and (b) lead-lag for use in a Rotor Track and Balance (RT&B) function in a Health and Usage Monitoring System (HUMS). HUMS is a generic term for a system used to measure, monitor, process, and store information relating to the functioning and usage of an aircraft's on-board primary systems, including the engine(s).
HM-1R Rotorcraft Integrated Vehicle Health Management
Accelerometers are transducers, or sensors, that convert acceleration into an electrical signal that can be used for airframe, drive, and propulsion system vibration monitoring and analysis within vehicle health and usage monitoring systems. This document defines interface requirements for accelerometers and associated interfacing electronics for use in a helicopter Health and Usage Monitoring System (HUMS). The purpose is to standardize the accelerometer-to-electronics interface with the intent of increasing interchangeability among HUMS sensors/systems and reducing the cost of HUMS accelerometers. Although this interface was specified with an internally amplified piezoelectric accelerometer in mind for Airframe and Drive Train accelerometers, this does not preclude the use of piezoelectric accelerometer with remote charge amplifier or any other sensor technology that meets the requirements given in this specification. This SAE HUMS Accelerometer Interface Specification includes the
HM-1R Rotorcraft Integrated Vehicle Health Management
This document establishes the Rotorcraft Industry Technology Association (RITA) Health and Usage Monitoring System Data Interchange Specification. The RITA HUMS Data Interchange Specification will provide information exchange within a rotorcraft HUMS and between a rotorcraft HUMS and external entities.
HM-1R Rotorcraft Integrated Vehicle Health Management
This SAE Standard covers reinforced rubber, reinforced thermoplastic, or otherwise constructed hose, or hose assemblies, intended for conducting liquid and gaseous refrigerants for service connections from mobile air conditioning systems to service equipment such as a manifold gauge set and vacuum pumps or for use internally, in charging stations or service equipment intended for use in servicing mobile air-conditioning systems.
Interior Climate Control Service Committee
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry.
Engine Power Test Code Committee
This classification system tabulates the properties of vulcanized rubber materials (natural rubber, reclaimed rubber, synthetic rubbers, alone or in combination) that are intended for, but not limited to, use in rubber products for automotive applications.
Committee on Automotive Rubber Specs
This SAE Standard specifies requirements for vulcanized rubbers in sheet form for use as standards in characterizing the effect of test liquids and service fluids. The appendices contain the standard reference elastomer formulas. The property changes of the SRE in contact with the indicated fluid under specified test conditions are the responsibility of the user. See 7.3 and Table 1. This standard is not designed to provide formulations of elastomeric product compositions for actual service.
Committee on Automotive Rubber Specs
This SAE Recommended Practice provides a system for marking thermoset rubber parts to designate the general type of material from which the part was fabricated.
Committee on Automotive Rubber Specs
This SAE Standard provides a system for specifying significant material properties of thermoplastic elastomers (TPEs) that are intended for, but not limited to, use in automotive applications. In all cases where provisions of this classification system would conflict with those of the detailed specifications for a particular product, the latter shall take precedence. This classification is based on SI units.
Committee on Automotive Rubber Specs
The scope of this document is to define a test method for performing the Compression Stress Relaxation (CSR) Test with the Automotive Standard (ASD) CSR Jig using the appropriate test fixtures, configurations and procedures. This standard defines the equipment needed, guidelines for running the test, and the format for generating the results and analyzing the data.
Committee on Automotive Rubber Specs
This procedure provides methods to determine the appropriate inertia values for all passenger cars and light trucks up to 4540 kg of GVWR. For the same vehicle application and axle (front or rear), different tests sections or brake applications may use different inertia values to reflect the duty-cycle and loading conditions indicated on the specific test.
Brake Dynamometer Standards Committee
SAE J2886 Design Review Based on Failure Modes (DRBFM) Recommended Practice is intended for Automotive and Non-Automotive applications. It describes the basic principles and processes of DRBFM including planning, preparation, change point FMEA, design reviews, decisions based on actions completed, and feedback loops to other processes, such as design, validation and process guidelines (Appendix B - DRBFM Process Map). The intent of each fundamental step of the DRBFM methodology is presented. It is intended for use by organizations whose product development processes currently (or intend to) use Failure Mode & Effects Analysis (FMEA) or DRBFM as a tool for assessing the potential risk and reliability of system elements (product or process) or as part of their product improvement processes. DRBFM is not intended to replace FMEA however, companies interested in adopting DRBFM will benefit from the focus on specific change points and supporting engineering decisions based on detailed
Automotive Quality and Process Improvement Committee
Time in Service (TIS), or flight hours, logged in maintenance records against an installed rotorcraft transmission is normally used as the “official” time on wing metric for the transmission’s component wear out inspection interval requirement and, in some instances, retirement change on life limited parts. This AIR addresses traditional methods of transmission TBO extensions and introduces rotorcraft transmission monitoring usage metrics that could be used to modify TIS inspections by tracking torque to determine both loads on life limited parts and component wear. This is a document of the SAE HM-1 Committee intended to be used as a technical information source and is not intended as a legal document or standard. This AIR does not provide detailed implementation steps, but does address general implementation, past experience, concerns and potential benefits.
HM-1R Rotorcraft Integrated Vehicle Health Management
This document specifies a multipoint, digital, serial interface that incorporates other interface standards such as EIA-485 and the nine bit interrupt mode of many microcontrollers. Standardized interfaces are critical to the development of an "open" HUMS architecture.
HM-1R Rotorcraft Integrated Vehicle Health Management
To establish a specification for software input and output interfaces for condition monitoring and performance programs used to monitor equipment from multiple manufacturers. The purpose of standardizing these interfaces is to improve operational flexibility and efficiency of monitoring systems as an aid to cost effectiveness (e.g., easier implementation).
HM-1 Integrated Vehicle Health Management Committee
This SAE Standard covers fittings intended for connecting service hoses, per SAE J2196, from Mobile Air-Conditioning Systems to service equipment such as manifold gauges, vacuum pumps and air conditioning charging, recovery and recycling equipment. (Figure 1)
Interior Climate Control Service Committee
This method is intended to define the continuous upper temperature limit (CUTL) of thermoplastic elastomers and thermoset rubber with durometer hardness <=90 Shore A, to oxidation or other degradation when exposed solely to hot air for an extended period of time.
null, null
This document provides a method/procedure for specifying the properties of vulcanized elastomeric materials (natural rubber or synthetic rubbers, alone or in combination) that are intended for, but not limited to, use in rubber products for automotive applications. This document covers materials that do not contain any re-use, recycled, or regrind materials unless otherwise agreed to by manufacturer and end user. The use of such materials, including maximum percent, must be specified using a “Z” suffix. This classification system covers thermoset High Consistency Elastomers (HCEs) only. Thermoplastic Elastomer (TPE) materials are classified using SAE J2558. Silicone Formed In Place Gasket (FIPG) systems such as Room Temperature Vulcanized (RTV) Silicones, and Liquid Silicone Rubber (LSR) systems are classified using ASTM F2468.
Committee on Automotive Rubber Specs
This FMEA standard describes potential failure mode and effects analysis in design (DFMEA), supplemental FMEA-MSR, and potential failure mode and effects analysis in manufacturing and assembly processes (PFMEA). It assists users in the identification and mitigation of risk by providing appropriate terms, requirements, rating charts, and worksheets. As a standard, this document contains requirements—”must”—and recommendations—”should”—to guide the user through the FMEA process. The FMEA process and documentation must comply with this standard as well as any corporate policy concerning this standard. Documented rationale and agreement with the customer are necessary for deviations in order to justify new work or changed methods during customer or third-party audit reviews.
Automotive Quality and Process Improvement Committee
SAE J4001 provides instruction for evaluating levels of compliance to SAE J4000. Component text (Sections 4 to 9) from SAE J4000 is included for convenience during the evaluation process. Applicable definitions and references are contained in SAE J4000. SAE J4000 tests lean implementation within a manufacturing organization and includes those areas of direct overlap with the organization’s suppliers and customers. If applied to each consecutive organizational link, an enterprise level evaluation can be made. SAE J4001 relates the following approximate topic percentages to the implementation process as a whole: SAE J4001 is to be applied on a specific component basis. Each of the 52 components tests part of, one, or multiples of the specific requirements of lean implementation. Implementation throughout an organization may be measured by evaluating all of the components. The level of compliance for each component relative to best practice may be used as a reference by an organization to
Automotive Quality and Process Improvement Committee
AS22759 specification covers fluoropolymer-insulated single conductor electrical wires made with tin-coated, silver-coated, or nickel-coated conductors of copper or copper alloy as specified in the applicable detail specification. The fluoropolymer insulation may be polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), polyvinylidene fluoride (PVF2), ethylene-tetrafluoroethylene copolymer (ETFE), or other Fluoropolymer resin. The fluoropolymer may be used alone or in combination with other insulation materials. These abbreviations shall be used herein. When a wire is referenced herein, it means an insulated conductor (see 7.7).
AE-8D Wire and Cable Committee
This document covers the requirements for insulated, single-conductor, electric wires with tin-coated, silver-coated, or nickel-coated conductors of copper or copper alloy as specified in an applicable generated performance sheet (see Appendix A for sample). It provides general performance requirements, ratings, and information for various characteristics of insulated wire systems used in aerospace applications. Numerical test requirements, or parameters, were originally developed using either English or metric units. The original, primary, units are shown first with the secondary (converted) units in parentheses. Secondary units are listed for information only and are not to be considered requirements. Wire will be assigned a level of performance for many requirements set forth in this standard. These performance levels, in addition to numerical test results, shall be listed in the applicable performance sheet. This standard contains some tests and referenced AS4373 Test Methods that
AE-8D Wire and Cable Committee
Items per page:
1 – 50 of 211743