Yield Mapping with Digital Aerial Color Infrared (CIR) Images

1999-01-2847

09/14/1999

Event
International Off-Highway & Powerplant Congress & Exposition
Authors Abstract
Content
Yield potential was predicted and mapped for three corn fields in Central Illinois, using digital aerial color infrared images. Three methods, namely statistical (regression) modeling, genetic algorithm optimization and artificial neural networks, were used for developing yield models. Two image resolutions of 3 and 6 m/pixel were used for modeling. All the models were trained using July 31 image and tested using images from July 2 and August 31, all from 1998. Among the three models, artificial neural networks gave best performance, with a prediction error less than 30%. The statistical model resulted in prediction errors in the range of 23 to 54%. The lower resolution images resulted in better prediction accuracy compared to resolutions higher than or equal to the yield resolution. Images after pollination resulted in better accuracy compared to images before pollination.
Meta TagsDetails
DOI
https://doi.org/10.4271/1999-01-2847
Pages
16
Citation
GopalaPillai, S., Tian, L., and Bullock, D., "Yield Mapping with Digital Aerial Color Infrared (CIR) Images," SAE Technical Paper 1999-01-2847, 1999, https://doi.org/10.4271/1999-01-2847.
Additional Details
Publisher
Published
Sep 14, 1999
Product Code
1999-01-2847
Content Type
Technical Paper
Language
English