This study focuses on the vibration analysis of hybrid composite laminated plates fabricated from E-glass Fiber and areca Fiber reinforced with epoxy resin. The hybrid laminates were prepared using the Vacuum Assisted Resin Transfer Moulding (VARTM) process with different stacking sequences and Fiber ratios, where brake lining powder was also incorporated as a filler in selected configurations to enhance mechanical and damping properties. The fabricated plates (280 × 280 mm) were subjected to experimental modal analysis using an impact hammer and accelerometer setup, with data acquisition carried out through DEWESoft software. Natural frequencies and damping ratios were determined under three boundary conditions (C- C-C-C, C-F-C-F, and C-F-F-F). The results revealed that Plate 1, with E-glass outer layers, areca reinforcement, and filler addition, exhibited the best vibration performance, achieving a maximum natural frequency of 332.8 Hz under C-C-C-C condition, while Plate 2 showed a balanced response and Plate 3 demonstrated higher stiffness but lower damping capability. These findings suggest that incorporating areca Fiber in combination with E-glass not only reduces weight but also improves damping without significantly compromising structural integrity. The developed hybrid composites hold strong potential for lightweight, vibration-sensitive applications such as automotive interiors, marine structures, construction panels, and sports equipment, where both sustainability and performance are critical.