The Tolerance of the Human Hip to Dynamic Knee Loading

2002-22-0011

11/11/2002

Event
46th Stapp Car Crash Conference (2002)
Authors Abstract
Content
Based on an analysis of the National Automotive Sampling System (NASS) database from calendar years 1995-2000, over 30,000 fractures and dislocations of the knee-thigh-hip (KTH) complex occur in frontal motor-vehicle crashes each year in the United States. This analysis also shows that the risk of hip injury is generally higher than the risks of knee and thigh injuries in frontal crashes, that hip injuries are occurring to adult occupants of all ages, and that most hip injuries occur at crash severities that are equal to, or less than, those used in FMVSS 208 and NCAP testing. Because previous biomechanical research produced mostly knee or distal femur injuries, and because knee and femur injuries were frequently documented in early crash investigation data, the femur has traditionally been viewed as the weakest part of the KTH complex. However, the relative risk of hip injuries to the risks of knee and thigh injuries in frontal crashes of late-model vehicles suggests that this may not be the case.
This study investigated the frontal-impact fracture tolerance of the hip in nineteen tests performed on the KTH complexes from sixteen unembalmed human cadavers. In each test, the pelvis was rigidly fixed by gripping the iliac wings with the thigh-to-pelvis angle set to correspond to a standard automotive-seated posture. A dynamic load was applied to the knee along the axis of the femur at loading rates that are representative of knee-to-knee bolster impacts in frontal crashes. Rigidly fixing the pelvis minimizes inertial effects along the KTH complex, which results in similar force levels along the KTH complex. Consequently, in these tests, the weakest part of the KTH complex failed first. All seventeen fixed pelvis tests that produced usable data resulted in acetabular fractures at an average applied force of 5.70 kN (sd = 1.38 kN). The lack of injuries to the femoral shaft and distal femur in these tests indicates that the tolerance of the hip is less than that of the femur under frontal-impact loading.
To further explore the tolerance of the femur relative to the hip, thirteen uninjured knee/femur specimens from seven cadavers previously used in hip tolerance tests were dynamically loaded. In these tests, the head of the femur was supported in a fixed “acetabular cup” to minimize inertial effects, and load was applied at the knee along the axis of the femur. All of these tests resulted in femoral neck fractures. Two tests also resulted in fractures to the femoral shaft. The average tolerance of the femoral neck from these tests is 7.59 kN (sd = 1.58 kN), which is significantly higher (p < 0.05) than the tolerance of the acetabulum. These results suggest that the mid and distal portions of the femur have a higher tolerance under these loading conditions than the pelvic and femoral portions of the hip.
Meta TagsDetails
DOI
https://doi.org/10.4271/2002-22-0011
Pages
20
Citation
Rupp, J., Reed, M., Van Ee, C., Kuppa, S. et al., "The Tolerance of the Human Hip to Dynamic Knee Loading," SAE Technical Paper 2002-22-0011, 2002, https://doi.org/10.4271/2002-22-0011.
Additional Details
Publisher
Published
Nov 11, 2002
Product Code
2002-22-0011
Content Type
Technical Paper
Language
English