System Analysis of an Integrated Methanol Steam Reformer/PEM Fuel Cell Power Generating System

929212

08/03/1992

Event
27th Intersociety Energy Conversion Engineering Conference (1992)
Authors Abstract
Content
A methanol fuelled P.E.M. fuel cell power plant with a baseline output of 112 kW (150 HP) was simulated using previously developed models for the various sub-systems. The duty cycle of a typical tractor-trailer for long distance haulage was used as the design basis. The integration of the various components of the system was examined in detail. By recovering heat from the fuel cell cooling system, burning excess hydrogen from the fuel cell anode exhaust and thermally coupling the exothermic selective oxidizer with the endothermic methanol steam reformer, the fuel supply sub-system can be made autothermal (ie.requiring no additional heating). Utilizing turbochargers on the fuel supply sub-system and also on the final system exhaust significantly reduces the parasitic load required for compressing air. Assuming conservative efficiencies for compressors, gas turbines and the traction motor gave overall system efficiencies in the range of 32-35% based on the lower heating value of methanol. The effects of a number of operating conditions on efficiency were explored at a baseline power of 112 kW. Air compressor power, cooling system heat load and steam to methanol ratio in the feed were found to be the most significant operating parameters.
Meta TagsDetails
DOI
https://doi.org/10.4271/929212
Pages
6
Citation
Amphlett, J., Baumert, R., Mann, R., and Peppley, B., "System Analysis of an Integrated Methanol Steam Reformer/PEM Fuel Cell Power Generating System," SAE Technical Paper 929212, 1992, https://doi.org/10.4271/929212.
Additional Details
Publisher
Published
Aug 3, 1992
Product Code
929212
Content Type
Technical Paper
Language
English