In this study, a correlation between the maximum heat release rate and vibrations from a diesel engine block was derived, and a methodology to determine the maximum heat release rate is presented. To investigate and analyze the correlation, an engine test and an actual road vehicle test were performed using a 1.6-L diesel engine. By varying the engine speed, load and main injection timing, the vibration signals from the engine block were measured and analyzed using a continuous wavelet transform (CWT).
The results show that the maximum heat release rate has a strong correlation with the magnitude of the vibrations. A specific bandwidth, the vibration signals between 0.3∼1.5 kHz, was affected by the variation in the heat release rate. The vibrations excited by combustion lasted over 50 CAD; however, the signals during the period of 35 CAD after the start of injection had a dominant effect on the maximum heat release rate. The coefficients of the CWT were integrated between the 0.3∼1.5 kHz band during 35 CAD after the start of the main injection. The results show that the integrated value is proportional to the maximum heat release rate. As a result, the maximum heat release rate can be estimated using the correlation.