Simulation of Catalytic Oxidation and Selective Catalytic NOx Reduction in Lean-Exhaust Hybrid Vehicles

2012-01-1304

04/16/2012

Event
SAE 2012 World Congress & Exhibition
Authors Abstract
Content
We utilize physically-based models for diesel exhaust catalytic oxidation and urea-based selective catalytic NOx reduction to study their impact on drive cycle performance of hypothetical light-duty diesel-powered hybrid and plug-in hybrid vehicles (HEVs and PHEVs). The models have been implemented as highly flexible SIMULINK block modules that can be used to study multiple engine-aftertreatment system configurations. The parameters of the NOx reduction model have been adjusted to reflect the characteristics of commercially available Cu-zeolite catalysts, which are of widespread current interest. We demonstrate application of these models using the Powertrain System Analysis Toolkit (PSAT) software for vehicle simulations, along with a previously published methodology that accounts for emissions and temperature transients in the engine exhaust. Our results illustrate that the DOC-SCR combination can reduce CO, HC and NOx emissions without creating a significant direct fuel penalty, but there is also an increase in the possibility of ammonia slip. Also, the addition of an upstream DOC increases aftertreatment thermal inertia, delaying light-off of the SCR catalyst. We find that the emissions reduction efficiency of the DOC-SCR combination is better for our simulated HEV compared to our simulated PHEV.
Meta TagsDetails
DOI
https://doi.org/10.4271/2012-01-1304
Pages
22
Citation
Gao, Z., Daw, C., and Chakravarthy, V., "Simulation of Catalytic Oxidation and Selective Catalytic NOx Reduction in Lean-Exhaust Hybrid Vehicles," SAE Technical Paper 2012-01-1304, 2012, https://doi.org/10.4271/2012-01-1304.
Additional Details
Publisher
Published
Apr 16, 2012
Product Code
2012-01-1304
Content Type
Technical Paper
Language
English