Simulating Rechargeable Lithium-Ion Battery Using VHDL-AMS

2012-01-0665

04/16/2012

Event
SAE 2012 World Congress & Exhibition
Authors Abstract
Content
A commonly used physics based electrochemisty model for a lithium-ion battery cell was first proposed by professor Newman in 1993. The model consists of a tightly coupled set of partial differential equations. Due to the tight coupling between the equations and the 2d implementation due to the particle modeling, and thus called pseudo-2d in literature, numerically obtaining a solution turns out to be challenging even for a lot of commercial softwares. In this paper, the VHDL-AMS language is used to solve the set of equations. VHDL-AMS allows the user to focus on the physical modeling rather than numerically solving the governing equations. In using VHDL-AMS, the user only needs to specify the governing equations after spatial discretization. A simulation environment, which supports VHDL-AMS, can then be used to solve the governing equations and also provides both pre- and post- processing tools. Using such a process, it takes less than two days to implement the Newman model from scratch. The paper introduces the approach by solving simple non-electrochemistry models first followed by solving the full Newman electrochemistry model.
Meta TagsDetails
DOI
https://doi.org/10.4271/2012-01-0665
Pages
15
Citation
Hu, X., Lin, S., and Stanton, S., "Simulating Rechargeable Lithium-Ion Battery Using VHDL-AMS," SAE Technical Paper 2012-01-0665, 2012, https://doi.org/10.4271/2012-01-0665.
Additional Details
Publisher
Published
Apr 16, 2012
Product Code
2012-01-0665
Content Type
Technical Paper
Language
English