Off-highway vehicles (OHVs) frequently operate in extreme environments—ranging from arid deserts and frozen tundras to dense forests and abrasive mining zones—where structural wear, impact damage, and environmental stress compromise their material integrity. Frequent repairs and component replacements increase operational costs, downtime, and environmental waste, making durability and sustainability key concerns for next-generation vehicle systems. This paper explores a novel class of self-healing biodegradable composites, inspired by biological systems, to address these challenges. The proposed materials combine bio-based resins, microencapsulated healing agents, and shape-memory polymers (SMPs) to autonomously repair microcracks and surface-level damage when triggered by thermal, UV, or mechanical stimuli. The design draws inspiration from natural self-healing systems such as tree bark and reptile skin, replicating their regenerative behavior to enhance structural resilience in OHVs. The composite’s biodegradability ensures environmental friendliness at end-of-life, aligning with circular economy goals. Laboratory-scale experiments and computational simulations assess tensile strength, fracture toughness, healing efficiency, and environmental stability (e.g., temperature cycling, UV exposure, and abrasion).