Security Mechanism and Verification of Vehicle Network Based on Message Authentication



New Energy & Intelligent Connected Vehicle Technology Conference
Authors Abstract
In view of the relatively bare network environment of the current car controller area network (CAN) and the high-performance requirements of most existing security mechanisms for electronic control units (ECUs), based on a new and faster network transmission protocol, a lightweight car bus authentication method using Message Authentication Code (MAC) is proposed. In this case, the vehicle network is modularized in dependence on the different functional requirements of each part of the bus, calculation tasks are processed by the gateway of the corresponding network segment, the confidentiality and correctness of the vehicle network can be guaranteed by synchronizing the message authentication tables in all nodes, and the transmission rate gets obvious improvement under CAN FD (flexible data-rate) protocol as well. In this paper, the security and real-time performance of the vehicle network are verified by hardware experiments, and the impact of the encryption method on the performance in the network is verified by software simulation. The CAN FD bus is formally designed in the MATLAB environment with finite state machine. The state machine model can dynamically display the communication behavior of the bus system during simulation, and is suitable for building an optimized simulation platform for the CAN FD bus network. Therefore, simulations on this platform are conducted, and comparisons between different performance parameters of CAN and CAN FD network are carried out.
Meta TagsDetails
Wang, B., Pi, D., Xie, B., Wang, H. et al., "Security Mechanism and Verification of Vehicle Network Based on Message Authentication," SAE Technical Paper 2019-01-5028, 2019,
Additional Details
Nov 4, 2019
Product Code
Content Type
Technical Paper