The Role of Finite Deformation Analysis in Plane Stress and Strain Fractures

740332

02/01/1974

Event
International Conference on Vehicle Structural Mechanics
Authors Abstract
Content
A full nonlinear analysis, geometric as well as constitutive, of cracked plates in plane stress and strain is given. The theory is formulated in a Lagrangian frame of reference. The Newton-Rahpson method is used to solve for generalized displacements in the resulting nonlinear equilibrium equations. An elastic-perfectly plastic behavior is assumed.
An example of a plate containing a sharp crack and subjected to tensile load is solved using a developed finite element computer program. The analysis reveals the extent to which linear elastic-plastic approximation can be used with confidence. The inclusion of changes of large geometry results in higher and more intense strains directly ahead of the crack tip. Also a limited value of stress is achieved in the near crack tip zone. In general, the full nonlinear analysis presents a better representation of ductile fracture mechanisms than does linear elastic-plastic analysis.
Meta TagsDetails
DOI
https://doi.org/10.4271/740332
Pages
9
Citation
Youssef, A., and Jaeger, L., "The Role of Finite Deformation Analysis in Plane Stress and Strain Fractures," SAE Technical Paper 740332, 1974, https://doi.org/10.4271/740332.
Additional Details
Publisher
Published
Feb 1, 1974
Product Code
740332
Content Type
Technical Paper
Language
English