ROBUST VEHICLE STABILITY BASED ON NON-LINEAR MODEL PREDICTIVE CONTROL AND ENVIRONMENTAL CHARACTERIZATION

2024-01-3636

08/08/2017

Features
Event
2017 Ground Vehicle Systems Engineering and Technology Symposium
Authors Abstract
Content
ABSTRACT

A Non-linear Model Predictive Controller (NMPC) was developed for an unmanned ground vehicle (UGV). The NMPC uses a particle swarm pattern search algorithm to optimize the control input, which contains a desired steer angle and a desired longitudinal velocity. The NMPC is designed to approach a target whilst avoiding obstacles that are detected using a light detection and ranging sensor (lidar). Since not all obstacles are stationary, an obstacle tracking algorithm is employed to track obstacles. Two point cluster detection algorithms were reviewed, and a constant velocity Kalman filter-based tracking loop was developed. The tracked obstacles’ positions are predicted using a constant velocity model in the NMPC; this allows for avoidance of both stationary and dynamic obstacles.

Meta TagsDetails
DOI
https://doi.org/10.4271/2024-01-3636
Pages
15
Citation
Stamenov, V., Geiger, S., Bevly, D., and Balas, C., "ROBUST VEHICLE STABILITY BASED ON NON-LINEAR MODEL PREDICTIVE CONTROL AND ENVIRONMENTAL CHARACTERIZATION," SAE Technical Paper 2024-01-3636, 2017, https://doi.org/10.4271/2024-01-3636.
Additional Details
Publisher
Published
Aug 8, 2017
Product Code
2024-01-3636
Content Type
Technical Paper
Language
English