Road Sign Recognition System Based on Wavelet Transform and OPSA Point Set Distance

2018-01-1609

08/07/2018

Event
Intelligent and Connected Vehicles Symposium
Authors Abstract
Content
Signage recognition is one of the hot topics in recent years. It has important applications in intelligent traffic and autonomous driving of smart cars. This paper designs a road marking recognition method combining OPSA point set distance and wavelet transform. The method consists of three main phases: 1) image denoising, restoration, 2) feature extraction, and 3) image recognition. First, a Gaussian-smoothing filter used to attenuate or remove irrelevant information in the image, enhance related information in the image, and achieve image denoising. In the feature extraction stage, the feature extraction and recognition method based on wavelet transform adopted to overcome the deficiency of the traditional Fourier feature extraction method, ensure that high frequency information is not lost, and low frequency information is not lost. Finally, the OSPA point set used to identify distance markers. Compared with the standard image, the experimental results show that this method can overcome the weather change, Gaussian white noise caused by illumination changes, and the slight rotation of the collected landmark image, the scale change and the noise caused by the translation. This method realizes the accurate recognition of road signs, has strong fault tolerance and robustness, and has certain guiding significance for the research of assisted driving systems.
Meta TagsDetails
DOI
https://doi.org/10.4271/2018-01-1609
Pages
5
Citation
Wang, L., "Road Sign Recognition System Based on Wavelet Transform and OPSA Point Set Distance," SAE Technical Paper 2018-01-1609, 2018, https://doi.org/10.4271/2018-01-1609.
Additional Details
Publisher
Published
Aug 7, 2018
Product Code
2018-01-1609
Content Type
Technical Paper
Language
English