Real-world Evaluation of National Energy Efficiency Potential of Cold Storage Evaporator Technology in the Context of Engine Start-Stop Systems

2020-01-1252

04/14/2020

Features
Event
WCX SAE World Congress Experience
Authors Abstract
Content
National concerns over energy consumption and emissions from the transportation sector have prompted regulatory agencies to implement aggressive fuel economy targets for light-duty vehicles through the U.S. National Highway Traffic Safety Administration/Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) program. Automotive manufacturers have responded by bringing competitive technologies to market that maximize efficiency while meeting or exceeding consumer performance and comfort expectations. In a collaborative effort among Toyota Motor Corporation, Argonne National Laboratory (ANL), and the National Renewable Energy Laboratory (NREL), the real-world savings of one such technology is evaluated. A commercially available Toyota Highlander equipped with two-phase cold storage technology was tested at ANL’s chassis dynamometer testing facility. The cold storage technology maintains the thermal state of air-conditioning evaporators to enable longer and more frequent engine-off operation in vehicles equipped with start-stop functionality. Test results were analyzed and provided to NREL where a novel simulation framework was developed and calibrated to the test data. The vehicle model was then exercised over a large set of real-world drive cycle and ambient condition data to estimate national-level fuel economy benefits. Results indicate that the cold storage evaporator provided national fuel consumption reductions of 0.1124% relative to a conventional evaporator in the same vehicle. In addition, when the cold storage evaporator engine stop/start was enabled for any temperature and the baseline was limited to the EPA menu, Start and Stop credit assumption of 27°C, a national fuel savings of 0.3724% was found. Fuel savings resulted from a combination of extended engine-off duration during idle events and increased frequency of deceleration fuel cutoff, both enabled by the ability of the cold storage evaporator to maintain thermal state in situations where air conditioning is active.
Meta TagsDetails
DOI
https://doi.org/10.4271/2020-01-1252
Pages
17
Citation
Song, Y., Cosgrove, D., Jehlik, F., Demingo, A. et al., "Real-world Evaluation of National Energy Efficiency Potential of Cold Storage Evaporator Technology in the Context of Engine Start-Stop Systems," SAE Technical Paper 2020-01-1252, 2020, https://doi.org/10.4271/2020-01-1252.
Additional Details
Publisher
Published
Apr 14, 2020
Product Code
2020-01-1252
Content Type
Technical Paper
Language
English