RCCI Engine Operation Towards 60% Thermal Efficiency

2013-01-0279

04/08/2013

Event
SAE 2013 World Congress & Exhibition
Authors Abstract
Content
The present experimental study explored methods to obtain the maximum practical cycle efficiency with Reactivity Controlled Compression Ignition (RCCI). The study used both zero-dimensional computational cycle simulations and engine experiments. The experiments were conducted using a single-cylinder heavy-duty research diesel engine adapted for dual fuel operation, with and without piston oil gallery cooling. In previous studies, RCCI combustion with in-cylinder fuel blending using port-fuel-injection of a low reactivity fuel and optimized direct-injections of higher reactivity fuels was demonstrated to permit near-zero levels of NOx and PM emissions in-cylinder, while simultaneously realizing gross indicated thermal efficiencies in excess of 56%.
The present study considered RCCI operation at a fixed load condition of 6.5 bar IMEP an engine speed of 1,300 [r/min]. The experiments used a piston with a flat profile with 18.7:1 compression ratio. The results demonstrated that the indicated gross thermal efficiency could be increased by not cooling the piston, by using high dilution, and by optimizing in-cylinder fuel stratification with two fuels of large reactivity differences. The best results achieved gross indicated thermal efficiencies near 60%. By further analyzing the results with zero-dimensional engine cycle simulations, the limits of cycle efficiency were investigated. The simulations demonstrated that the RCCI operation without piston oil cooling rejected less heat, and that ~94% of the maximum cycle efficiency could be achieved while simultaneously obtaining ultra-low NOx and PM emissions.
Meta TagsDetails
DOI
https://doi.org/10.4271/2013-01-0279
Pages
20
Citation
Splitter, D., Wissink, M., DelVescovo, D., and Reitz, R., "RCCI Engine Operation Towards 60% Thermal Efficiency," SAE Technical Paper 2013-01-0279, 2013, https://doi.org/10.4271/2013-01-0279.
Additional Details
Publisher
Published
Apr 8, 2013
Product Code
2013-01-0279
Content Type
Technical Paper
Language
English