Modern on-road vehicles have been making steady strides when it comes to employing technological advances featuring active safety systems. However, off-highway machines are lagging in this area and are in dire need for modernization. One chassis system that has been receiving much attention in the automotive field is the steering system, where several electric and electrohydraulic steering architectures have been implemented and steer-by-wire technologies are under current research and development activities. On the other hand, off-highway articulated steering vehicles have not adequately evolved to meet the needs of Original Equipment Manufacturers (OEM) as well as their end customers. Present-day hydrostatic steering systems are plagued with poor energy efficiency due to valve throttling losses and are considered passive systems relative to safety, adjustability, and comfort.
This paper introduces a novel scheme of an electro-hydraulic power steering system that utilizes a proven energy-saving technology, pump displacement control, which eliminates throttling losses associated with hydraulic control valves by controlling the displacement of a variable displacement pump. This new architecture lends itself to high energy efficiency resulting in lower fuel consumption and reduced emissions, higher machine productivity and reduced operator fatigue, and active safety functions that counteract instabilities and reject disturbances.