Pulsed Regeneration for DPF Aftertreatment Devices

2011-24-0182

09/11/2011

Event
10th International Conference on Engines & Vehicles
Authors Abstract
Content
DPF regenerations involve a trade-off between fuel economy and DPF durability. High temperature regenerations of DPFs have fewer fuel penalties but simultaneously tend to give higher substrate temperatures, which can reduce thermal reliability. In order to weaken the trade-off, the integrated system-level model [1,2,3,4] is used to conduct optimization studies and explore novel regeneration strategies for DPF aftertreatment devices. The integrated model developed in the Engine Research Center (ERC) includes sub-models for engines, emissions, aftertreatment devices and controllers. Based on the engine and regeneration fuel economy, multiple and single cycle regeneration tests are performed and analyzed. The optimal soot loadings to initiate and terminate regenerations are discussed. A pulsed regeneration strategy, which is characterized by injecting multiple pulses of fuel (upstream of a DOC) during regenerations, is investigated. It is found that pulsed regeneration has the potential to reduce regeneration fuel penalties without generating significantly high wall temperatures that can reduce DPF durability.
Meta TagsDetails
DOI
https://doi.org/10.4271/2011-24-0182
Pages
15
Citation
Gong, J., and Rutland, C., "Pulsed Regeneration for DPF Aftertreatment Devices," SAE Technical Paper 2011-24-0182, 2011, https://doi.org/10.4271/2011-24-0182.
Additional Details
Publisher
Published
Sep 11, 2011
Product Code
2011-24-0182
Content Type
Technical Paper
Language
English