Performance of Microlith Based Catalytic Reactors for an Isooctane Reforming System

2003-01-1366

03/03/2003

Event
SAE 2003 World Congress & Exhibition
Authors Abstract
Content
Use of catalytically coated short contact time (SCT) design approaches for application in mass transfer controlled reactors such as Auto Thermal Reformers (ATR's) is an area of much recent interest.
Precision Combustion, Inc. (PCI) has developed an efficient and compact ATR using ultra-short channel length, high cell density SCT substrates (Microlith®). PCI has also extended this Microlith technology to other fuel processor reactors that operate at lower temperatures and are not mass transfer limited. Namely, reactors for the Water Gas Shift (WGS) and Preferential Oxidation (PROX) of CO have been developed. Due to the higher surface area per unit volume of the Microlith substrate compared to conventional monoliths, size advantages have been observed for these reactions, which are more kinetically controlled. This results not only in shortened startup times and quick load following capability but also allows much smaller and lighter reactors - required attributes for automotive fuel cell applications. In this paper, experimental data on the performance of Microlith based ATR, WGSR and PROX reactors for reforming isooctane is presented. Transient and durability characteristics have also been included and compared to Department of Energy (DOE) targets.
Meta TagsDetails
DOI
https://doi.org/10.4271/2003-01-1366
Pages
10
Citation
Castaldi, M., Lyubovsky, M., LaPierre, R., Pfefferle, W. et al., "Performance of Microlith Based Catalytic Reactors for an Isooctane Reforming System," SAE Technical Paper 2003-01-1366, 2003, https://doi.org/10.4271/2003-01-1366.
Additional Details
Publisher
Published
Mar 3, 2003
Product Code
2003-01-1366
Content Type
Technical Paper
Language
English