Optimization of a Military Ground Vehicle Engine Cooling System Heat Exchanger - Modeling and Size Scaling

2017-01-0259

03/28/2017

Features
Event
WCX™ 17: SAE World Congress Experience
Authors Abstract
Content
Heat rejection in ground vehicle propulsion systems remains a challenge given variations in powertrain configurations, driving cycles, and ambient conditions as well as space constraints and available power budgets. An optimization strategy is proposed for engine radiator geometry size scaling to minimize the cooling system power consumption while satisfying both the heat removal rate requirement and the radiator dimension size limitation. A finite difference method (FDM) based on a heat exchanger model is introduced and utilized in the optimization design. The optimization technique searches for the best radiator core dimension solution over the design space, subject to different constraints. To validate the proposed heat exchanger model and optimization algorithm, a heavy duty military truck engine cooling system is investigated. For a convoy escort driving cycle, numerical results demonstrate that by increasing the prototype radiator frontal area, the cooling system energy cost can be significantly reduced. The proposed radiator size scaling algorithm offered a methodology of evaluating the tradeoff between physical dimension, heat generation and power. It is a powerful tool that allows optimal deciding the space, cooling and power usage for a given cooling system application.
Meta TagsDetails
DOI
https://doi.org/10.4271/2017-01-0259
Pages
10
Citation
Tao, X., and Wagner, J., "Optimization of a Military Ground Vehicle Engine Cooling System Heat Exchanger - Modeling and Size Scaling," SAE Technical Paper 2017-01-0259, 2017, https://doi.org/10.4271/2017-01-0259.
Additional Details
Publisher
Published
Mar 28, 2017
Product Code
2017-01-0259
Content Type
Technical Paper
Language
English