Optical Characterization of Methanol Sprays and Mixture Formation in a Compression-Ignition Heavy-Duty Engine

2020-01-2109

09/15/2020

Features
Event
SAE Powertrains, Fuels & Lubricants Meeting
Authors Abstract
Content
Methanol is not a fuel typically used in compression ignition engines due to the high resistance to auto-ignition. However, conventional diesel combustion and PPC offer high engine efficiency along with low HC and CO emissions, albeit with the trade-off of increased NOx and PM emissions. This trade-off balance is mitigated in the case of methanol and other alcohol fuels, as they bring oxygen in the combustion chamber. Thus methanol compression ignition holds the potential for a clean and effective alternative fuel proposition. Most existing research on methanol is on SI engines and very little exists in the literature regarding methanol auto-ignition engine concepts. In this study, the spray characteristics of methanol inside the optically accessible cylinder of a DI-HD engine are investigated. The liquid penetration length at various injection timings is documented, ranging from typical PPC range down to conventional diesel combustion. Three matched engine operating conditions are studied, where the effective variant is injection pressure alone. The liquid penetration length and cone angle are characterized by Mie-scattering and the effect on fuel distribution is visualized via fuel-tracer PLIF. Finally, the liquid penetration length of methanol is compared to commonly used PRF81 gasoline, demonstrating a stark dependence on ambient conditions.
Meta TagsDetails
DOI
https://doi.org/10.4271/2020-01-2109
Pages
11
Citation
Matamis, A., Lonn, S., Tuner, M., Andersson, O. et al., "Optical Characterization of Methanol Sprays and Mixture Formation in a Compression-Ignition Heavy-Duty Engine," SAE Technical Paper 2020-01-2109, 2020, https://doi.org/10.4271/2020-01-2109.
Additional Details
Publisher
Published
Sep 15, 2020
Product Code
2020-01-2109
Content Type
Technical Paper
Language
English