Numerical Simulation of Battery Thermal Management Systems in Electric Vehicles

2019-28-2481

11/21/2019

Features
Event
NuGen Summit
Authors Abstract
Content
Electric vehicle works on stored energy inside the batteries or cells. These units needs to be regulated by cool down or heat up to perform utmost. This temperature regulation also ensure individual battery or cell life. BCS are installed on vehicles to regulate the temperature around battery packs. To ensure maximum performance of these units, numerical simulation is performed and detailed optimization of flow rate as well as flow path into BCS is carried out. All the parts are assembled inside the unit as per defined packaging area or size. Numerical modelling (CFD) is performed to examine the flow path. Flow path is very important to examine, as BCS units consists of condenser. It is very important for condensers to perform efficiently, which means air flow should happen across it appropriately. If sufficient flow is not happening across the condenser, then performance of condensers comes down and optimum temperature around battery packs cannot be maintained. This will affect the performance of battery pack capacity as well as individual battery life. Based on results obtained from existing design modifications are done to develop an optimum design and position of the unit on vehicle is also studied. Securing effective flow rate to attain maximum performance of battery cooling systems. This study mainly focus on flow behavior and flow rate only. For maintaining temperature in optimum range (20°C to 35°C) [1, 2, 3] where BCS plays very important role. This study offers importance of design, like optimizing position of heat exchangers and other openings around the coul. Later condenser inlet air velocity data from CFD is compared with test results. Numerical analysis (CFD) is performed using STAR CCM+ software. Which served as key resource to optimize the overall design as well as position.
Meta TagsDetails
DOI
https://doi.org/10.4271/2019-28-2481
Pages
5
Citation
Nuthi, B., S, V., and Govindaraj, D., "Numerical Simulation of Battery Thermal Management Systems in Electric Vehicles," SAE Technical Paper 2019-28-2481, 2019, https://doi.org/10.4271/2019-28-2481.
Additional Details
Publisher
Published
Nov 21, 2019
Product Code
2019-28-2481
Content Type
Technical Paper
Language
English