Numerical Characterization of Biodiesel Fuel Spray under Different Ambient and Fuel Temperature Conditions Using a Moments Spray Model

2016-01-0852

04/05/2016

Event
SAE 2016 World Congress and Exhibition
Authors Abstract
Content
The results of the numerical characterization of the hydrodynamics of Soybean Oil Methyl Ester (SME) fuel spray using a spray model based on the moments of the droplet size distribution function are presented.
A heat and mass transfer model based on the droplet surface-areaaveraged temperature is implemented in the spray model and the effects on the SME fuel spray tip penetration and droplet sizes at different ambient gas temperature (300 K to 450 K) and fuel temperature (300 K to 360 K) values are evaluated.
The results indicate that the SME fuel spray tip penetration values are insensitive to variations to the fuel temperature values but increase with increasing ambient gas temperature values. The droplet size values increase with increasing SME fuel temperature. The fuel vapor mass fraction is predicted to be highest at the spray core, with the axial velocity values of the droplets increasing with increases in the SME fuel spray temperature.
These results agree with those obtained from previously published experimental data and numerical results from a KIVA-3V code, though the magnitudes of the changes observed from the model are not as pronounced.
Meta TagsDetails
DOI
https://doi.org/10.4271/2016-01-0852
Pages
8
Citation
Emekwuru, N., "Numerical Characterization of Biodiesel Fuel Spray under Different Ambient and Fuel Temperature Conditions Using a Moments Spray Model," SAE Technical Paper 2016-01-0852, 2016, https://doi.org/10.4271/2016-01-0852.
Additional Details
Publisher
Published
Apr 5, 2016
Product Code
2016-01-0852
Content Type
Technical Paper
Language
English