The Nonlinear System Identification for the Engine of Automated Automobiles Using Neural Networks

961825

08/01/1996

Event
International Off-Highway & Powerplant Congress & Exposition
Authors Abstract
Content
In this paper the nonlinear system identification theory and method using neural networks are presented, the multilayer feedforward networks employed, the backpropagation learning algorithm proposed. The inputs of the networks are consisted of angular velocity and throttle angle, and outputs torque of the engine, finally the comparision of simulation result with that of experiment and other results that embody the effect of system identification are given. Relative studies revealed that the nonlinear system identification for the engine of automated automobiles using neural networks can be effective.
Meta TagsDetails
DOI
https://doi.org/10.4271/961825
Pages
7
Citation
Wu, G., Liu, Q., Song, B., and Zhao, K., "The Nonlinear System Identification for the Engine of Automated Automobiles Using Neural Networks," SAE Technical Paper 961825, 1996, https://doi.org/10.4271/961825.
Additional Details
Publisher
Published
Aug 1, 1996
Product Code
961825
Content Type
Technical Paper
Language
English