Navier-Stokes Computations of Transition to Turbulent Flow Around Airfoils

901808

09/01/1990

Event
Aerospace Technology Conference and Exposition
Authors Abstract
Content
Numerical solutions of the Reynolds-averaged Navier-Stokes equations were obtained with the two-equation K-ϵ turbulence model. Considering the low-Reynolds-number effect in the closed vicinity of a solid boundary, a stream function and vorticity method was developed to consider both the laminar and turbulent stresses throughout the two-dimensional, incompressible flowfield of any arbitrary geometry. At a low Reynolds number (Re = 30), the initially imposed disturbances around an airfoil are damped out; the flow is laminar. At a moderately high Reynolds number (Re = 1000), instability of laminar flow is obtained by exhibiting cyclic patterns in the stream function and vorticity distributions. Nevertheless, only laminar stress occurs in the entire flowfield. At a higher Reynolds number (Re = 106), turbulent stress, which is about three orders of magnitude larger than the laminar stress, occurs at a certain distance downstream of the leading edge and in the wake region. The location, where the turbulent stress begins to increase is considered as the point of transition.
Meta TagsDetails
DOI
https://doi.org/10.4271/901808
Pages
12
Citation
Lee, S., and Chen, C., "Navier-Stokes Computations of Transition to Turbulent Flow Around Airfoils," SAE Technical Paper 901808, 1990, https://doi.org/10.4271/901808.
Additional Details
Publisher
Published
Sep 1, 1990
Product Code
901808
Content Type
Technical Paper
Language
English