Modeling of Narrow-Angle Sprays Using a Spray Model Based on the Moments of the Droplet Size Distribution

2013-01-1593

04/08/2013

Event
SAE 2013 World Congress & Exhibition
Authors Abstract
Content
Recently a spray model that uses the moments of the droplet size distribution functions to represent the complete hydrodynamics characteristics of spray flow has been shown to be an applicable tool for the analysis of engine sprays. The primary advantage of the model is that it is less computationally intensive compared to models that track droplet parcels. The main purpose of the current study is to evaluate the capability of using the model for the predictions of narrow-angle sprays at fuel injection pressure cases of up to 770 bar and spray cone angles of just 30 from two different sets of experimental data, with the results being characterized by spray tip penetration and sauter mean diameter values. The effects of uncertain input parameters, like the collision constant in the droplet collision model, were assessed before the simulation of the experimental conditions. The numerical results indicate that the spray model is (i) applicable to narrow-angle, high pressure sprays, (ii) drop size data are reasonably captured, (iii) the spray tip penetration is under-predicted during late injection times, and (iv) a combination of different momentum models, and droplet collision models might need to be investigated to improve the model.
Meta TagsDetails
DOI
https://doi.org/10.4271/2013-01-1593
Pages
8
Citation
G. Emekwuru, N., "Modeling of Narrow-Angle Sprays Using a Spray Model Based on the Moments of the Droplet Size Distribution," SAE Technical Paper 2013-01-1593, 2013, https://doi.org/10.4271/2013-01-1593.
Additional Details
Publisher
Published
Apr 8, 2013
Product Code
2013-01-1593
Content Type
Technical Paper
Language
English