Modeling Knock in Spark-Ignition Engines Using a G-equation Combustion Model Incorporating Detailed Chemical Kinetics

2007-01-0165

04/16/2007

Event
SAE World Congress & Exhibition
Authors Abstract
Content
In this paper, knock in a Ford single cylinder direct-injection spark-ignition (DISI) engine was modeled and investigated using the KIVA-3V code with a G-equation combustion model coupled with detailed chemical kinetics. The deflagrative turbulent flame propagation was described by the G-equation combustion model. A 22-species, 42-reaction iso-octane (iC8H18) mechanism was adopted to model the auto-ignition process of the gasoline/air/residual-gas mixture ahead of the flame front. The iso-octane mechanism was originally validated by ignition delay tests in a rapid compression machine. In this study, the mechanism was tested by comparing the simulated ignition delay time in a constant volume mesh with the values measured in a shock tube under different initial temperature, pressure and equivalence ratio conditions, and acceptable agreements were obtained. The mechanism was further validated by modeling a gasoline homogeneous charge compression ignition (HCCI) engine at both low and high engine speeds. The G-equation combustion model was validated on the Ford DISI engine with spark advance and intake manifold pressure sweeps. Based on the model validation, knocking combustion under boost and globally stoichiometric operating conditions was simulated. Finally, knock mitigation strategies using cooled EGR and/or “two-stage mixing” were assessed based on the numerical analysis.
Meta TagsDetails
DOI
https://doi.org/10.4271/2007-01-0165
Pages
17
Citation
Liang, L., Reitz, R., Iyer, C., and Yi, J., "Modeling Knock in Spark-Ignition Engines Using a G-equation Combustion Model Incorporating Detailed Chemical Kinetics," SAE Technical Paper 2007-01-0165, 2007, https://doi.org/10.4271/2007-01-0165.
Additional Details
Publisher
Published
Apr 16, 2007
Product Code
2007-01-0165
Content Type
Technical Paper
Language
English