Modeling of the Fuel Behavior in the Intake Manifold of a Port-Injected Spark-Ignition Engine

972992

10/01/1997

Event
International Fuels & Lubricants Meeting & Exposition
Authors Abstract
Content
In order to elaborate accurate injection-control strategies aimed at limiting pollutant emissions resulting from transient S.I. engines operation, it is necessary to gain better understanding of the mixture formation.
In this paper, we present the first stage of a software whose purpose is to model in a phenomenological way an S.I. engine cycle in order to study mixture formation during transient operation. With respect to crank angle, it computes pressures and flow-rates throughout the engine (from the throttle to the exhaust port), the description of liquid and vapor fuel in the intake ports and the instantaneous equivalence ratio of the mixture entering the cylinders.
It is shown the non homogeneity of the intake port and in-cylinder mixture during the cycle, the importance of the liquid fuel film flow and the influence of the flow rates and pressures calculations on the fuel behavior. Both steady-state and transient engine operation may be performed and give coherent results according to experimental data. We also achieve a parametric study on the fuel model which demonstrates its great sensitivity to its parameters (such as the wetted area, the fuel distribution angle, …). That is why our present work deals with the spray transportation, evaporation and impact on the port walls and with the wall film evaporation.
Meta TagsDetails
DOI
https://doi.org/10.4271/972992
Pages
14
Citation
Sches, C., Guilain, S., and Maroteaux, F., "Modeling of the Fuel Behavior in the Intake Manifold of a Port-Injected Spark-Ignition Engine," SAE Technical Paper 972992, 1997, https://doi.org/10.4271/972992.
Additional Details
Publisher
Published
Oct 1, 1997
Product Code
972992
Content Type
Technical Paper
Language
English