Modeling Atomization and Break Up in High-Pressure Diesel Sprays
970881
02/24/1997
- Event
- Content
- Computation of high pressure Diesel injection requires improvement of present spray atomization and droplet breakup models. The surface wave instability atomization (Wave) model of Reitz [2] has been coupled to a new breakup model (FIPA) which is based on the experimental correlations of Pilch et al.[3]. It has been integrated in the 3D KMB code [1] derived from the Kiva 2 code [4] of Los Alamos already including a stochastic Lagrangian description of sprays. The droplet breakup FIPA model was first fitted and validated using the monodisperse drop breakup experiments of Liu and Reitz [5]. The response of the modified spray model including the global Wave-FIPA breakup model is compared to well characterized data obtained in a high pressure and temperature vessel. This vessel is fitted with a common-rail injection system with a single hole injector tip. Conditions simulating a direct injection diesel engine are obtained (ρg = 25kg/m3, Pg = 3 MPa and 6.1 MPa, Tg = 400K and 800K, Pinj from 40 to 150 MPa). Liquid and vapor penetrations in the vessel are well reproduced, even for high injection pressure cases and with or without evaporation.
- Pages
- 18
- Citation
- Habchi, C., Verhoeven, D., Huynh Huu, C., Lambert, L. et al., "Modeling Atomization and Break Up in High-Pressure Diesel Sprays," SAE Technical Paper 970881, 1997, https://doi.org/10.4271/970881.