Modal Analysis of Chladni Plate Using Cymatics

2020-28-0320

09/25/2020

Features
Event
International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility
Authors Abstract
Content
This work aims at demonstrating nodes and antinodes at various frequencies of vibrations. Chladni plate is used for this purpose. When the plate is excited because of vibrations from a vibrator source, the sand of the plate creates specific patterns. These patterns are related to the excitation frequency. The sand on the plate moves away from antinodes where the amplitude of the standing wave is maximum and towards nodal lines where the amplitude is minimum or zero, forming patterns known as Chladni figures. The formation of patterns depends on material properties, geometry of plate, and thickness of plate and frequency/vibration pattern of the vibrator. The experimental setup consisted of a aluminum rectangular plate of 16 cm × 16 cm and aluminum circular plate of diameter 16 cm are having thickness of 0.61 mm placed over a mechanical vibrator (GelsonLab HSPW-003), which was driven by a sine wave signal generator (Ningbo Hema scientific). The procedure consisted in sprinkling powder on the plate and sweeping the frequency of the function generator until a constant pattern was obtained. Different shapes formed by sand particle on the plate at different frequencies will be captured by the camera. Modal analysis is done using ANSYS workbench for validation purpose. Proposed work is at TRL (technology readiness level) of 3, research to prove feasibility [TRL of 3 of NASA 1 to 9 TRL levels]. As basic research is carried out to verify the use of Chladni Patterns to relate the frequency of vibration and the patterns generated. There is a possibility to work on plate geometry and material properties to relate the patterns generated with the vibrations and the chladni patterns.
Meta TagsDetails
DOI
https://doi.org/10.4271/2020-28-0320
Pages
7
Citation
Kumar, A., Chary, S., and Wani, K., "Modal Analysis of Chladni Plate Using Cymatics," SAE Technical Paper 2020-28-0320, 2020, https://doi.org/10.4271/2020-28-0320.
Additional Details
Publisher
Published
Sep 25, 2020
Product Code
2020-28-0320
Content Type
Technical Paper
Language
English