Mobility Energy Productivity Evaluation of Prediction-Based Vehicle Powertrain Control Combined with Optimal Traffic Management
2022-01-0141
03/29/2022
- Features
- Event
- Content
- Transportation vehicle and network system efficiency can be defined in two ways: 1) reduction of travel times across all the vehicles in the system, and 2) reduction in total energy consumed by all the vehicles in the system. The mechanisms to realize these efficiencies are treated as independent (i.e., vehicle and network domains) and, when combined, they have not been adequately studied to date. This research aims to integrate previously developed and published research on Predictive Optimal Energy Management Strategies (POEMS) and Intelligent Traffic Systems (ITS), to address the need for quantifying improvement in system efficiency resulting from simultaneous vehicle and network optimization. POEMS and ITS are partially independent methods which do not require each other to function but whose individual effectiveness may be affected by the presence of the other. In order to evaluate the system level efficiency improvements, the Mobility Energy Productivity (MEP) metric is used. MEP specifically measures the connectedness of a system while accounting for time and energy externalities of modes that provide mobility in a given location. A SUMO model is developed to reflect real traffic patterns in Fort Collins, Colorado and data is collected by a probe SUMO vehicle which is validated against data collected on a real vehicle driving the same routes through the city. Individual vehicle and system level efficiencies are calculated using SUMO outputs for scenarios which integrate POEMS and ITS independently as well as jointly. Results from application of POEMS and ITS show improvement in energy consumption and travel times respectively when compared to the respective baseline scenarios. Our conclusion is that there are promising synergistic benefits to travel time and energy efficiency when POEMS and ITS are combined.
- Pages
- 11
- Citation
- Motallebiaraghi, F., Yao, K., Rabinowitz, A., Hoehne, C. et al., "Mobility Energy Productivity Evaluation of Prediction-Based Vehicle Powertrain Control Combined with Optimal Traffic Management," SAE Technical Paper 2022-01-0141, 2022, https://doi.org/10.4271/2022-01-0141.