Measured Interfacial Residual Strains Produced by In-Flight Ice

2019-01-1998

06/10/2019

Features
Event
International Conference on Icing of Aircraft, Engines, and Structures
Authors Abstract
Content
The formation of ice on aircraft is a highly dynamic process during which ice will expand and contract upon freezing and undergoing changes in temperature. Finite element analysis (FEA) simulations were performed investigating the stress/strain response of an idealized ice sample bonded to an acrylic substrate subjected to a uniform temperature change. The FEA predictions were used to guide the placement of strain gages on custom-built acrylic and aluminum specimens. Tee rosettes were placed in two configurations adjacent to thermocouple sensors. The specimens were then placed in icing conditions such that ice was grown on top of the specimen. It was hypothesized that the ice would expand on freezing and contract as the temperature of the interface returned to the equilibrium conditions. While results from the aluminum specimens matched this hypothesis, results from the acrylic specimens show a short period of contraction followed by a much larger expansion at the interface, indicating more complex ice growth thermodynamics than anticipated. Some samples were observed to delaminate, suggesting that the residual strain is significant to the shedding of ice for in-flight applications.
Meta TagsDetails
DOI
https://doi.org/10.4271/2019-01-1998
Pages
8
Citation
Work, A., Salem, J., Baker, E., Schirmer, E. et al., "Measured Interfacial Residual Strains Produced by In-Flight Ice," SAE Technical Paper 2019-01-1998, 2019, https://doi.org/10.4271/2019-01-1998.
Additional Details
Publisher
Published
Jun 10, 2019
Product Code
2019-01-1998
Content Type
Technical Paper
Language
English